Sample size, model choice, and parallel runs

Overview

1. Sample size
2. Model parameters
3. How to reduce parameters
4. Bayes Factors (practical)
5. Replication and parallel runtime

Population size mantra

- The time to the most recent common ancestor is robust to different sample sizes.
- Simulated sequence data from a single population have shown that after 8 individuals you should better add another locus than more individuals.

Required samples is small

- The time to the most recent common ancestor is robust to different sample sizes.
- Simulated sequence data from a single population have shown that after 8 individuals you should better add another locus than more individuals.

Felsenstein (2005)
Pluzhnikov and Donnelly (1996)
Required samples is small

Multiple populations

Medium variability DNA dataset: Mutation-scaled population size Θ and mutation-scaled migration rate M versus sample size for 2, 5, and 10 loci. The true $\Theta_T = 0.01$ is marked with the dotted gray line; $M = 100$

Population models

Migration model specification

Migration model specification

Full sized

Mid sized

Economy
Model comparison

With a criterion such as likelihood, we can compare nested models. Commonly, we use a likelihood ratio test (LRT) or Akaike's information criterion (AIC) to establish whether phylogenetic trees are statistically different or mutation models have an effect on the outcome, etc. Kass and Raftery (1995) popularized the Bayes Factor as a Bayesian alternative to the LRT.

\[
p(M_1 | D) = \frac{p(M_1)p(D|M_1)}{p(D)} = \frac{p(M_1)}{p(M_2)} \times \frac{p(D|M_1)}{p(D|M_2)}
\]

\[
BF = \frac{p(D|M_1)}{p(D|M_2)} \quad LBF = 2 \ln BF = 2 \ln \left(\frac{p(D|M_1)}{p(D|M_2)} \right)
\]

The magnitude of BF gives us evidence against hypothesis \(M_2 \)

\[
LBF = 2 \ln BF = \begin{cases}
0 < |z| < 2 & \text{No real difference} \\
2 < |z| < 6 & \text{Positive} \\
6 < |z| < 10 & \text{Strong} \\
|z| > 10 & \text{Very strong}
\end{cases}
\]
A total of 70 individuals from 7 populations analyzed for 377 microsatellite loci:
Mutation model is Brownian motion approximation to the single-step mutation model.

H_2: Tangled mess

H_3: One panmictic population

Somewhat less H_4: Tangled mess
structured populations

Migration

H_1: Out of Africa, indecision anywhere else

H_5: Minimal model

H_4: South-Asia is cradle of humans

H_7: Direct train to Asia
Structured populations

Model order and probability using Bayes factors

1. Model 1: 0.0
2. Model 2: 1.0
3. Model 3: 0.0
4. Model 4: 0.0
5. Model 5: 0.0
6. Model 6: 0.0
7. Model 7: 0.0

H1: Minimal model

Run time concerns

MCMC works perfectly fine when run infinitely long. It is rather difficult to know when the (finite) run has converged and is sampling from the distribution of interest and is reaching all important parts. Several methods are used to improve convergence and sampling:

- Improve the proposal procedure
- Use Metropolis-coupled MCMC to improve finding peaks in the distribution.
- Program optimization can improve runtime considerably.
- Run several analyses in parallel

Embarrassingly parallel computation

Each locus is completely independent, therefore can run on a different computer. Embarrassingly simple parallel computing can be done by splitting up data set and gathering “results” from individual nodes by “hand”. This gets really tedious with 100+ loci.

MIGRATE uses a more sophisticated strategy (MPI) and can use a cluster of (loosely) connected computer nodes. With more loci than nodes a load balancing scheme is used.
Estimation of 9 parameters in a 3 population migration model using data from a total of 100 loci, distributed over 4, 8, 16, 32, 64, 101 computer nodes.

Speed of total run depends on the “slowest” locus (here out of 50)

Load-balancing allows more effective use of all available compute nodes.
Run time versus accuracy

Posterior density for a 2-parameter model (population size and gene flow) A run for 5×10^6 steps (sampling 3 quantities: 2 parameters and genealogies) took about 20 hours.

One long run:
all samples used (no burn-in)

Contour lines are at 50%, 95%, and 99% credibility level

$\Theta = 4N_e \mu$ (population size scaled by mutation rate)

$M = \frac{m}{\mu}$ (immigration rate scaled by mutation rate)

Posterior density for a 2-parameter model (population size and gene flow) 10 runs each for 5×10^6 steps took about 2 hours.

Run time versus accuracy

Posterior density for a 2-parameter model (population size and gene flow) 10 runs each for 5×10^6 steps took about 2 hours.

One long run: 20 hours
all samples used (no burn-in)
10 replicates: 2 hours
all samples used (no burn-in)

Contour lines are at 50%, 95%, and 99% credibility level

$\Theta = 4N_e \mu$ (population size scaled by mutation rate)

$M = \frac{m}{\mu}$ (immigration rate scaled by mutation rate)
Learn a computer scripting language today to be ready for tomorrow, the parallel genome sequencing revolution has begun.