de novo assembly

Rayan Chikhi

Pennsylvania State University

Workshop On Genomics - Cesky Krumlov - January 2013
Course structure

Topics I want to convey through this lecture:

- Short intro
- Basic definitions: what an assembly is.
- Fundamentals: what should I know to run an assembler?
- Metrics: what a satisfactory assembly is.
- Software: how to choose an assembler in 2013.
YOUR INSTRUCTOR IS..

- PhD at INRIA / ENS Cachan, France
- Postdoc at Penn State, USA

Research:
- Paired string graphs
- Targeted assembly
- Ultra-low memory assembly
- Constant-memory k-mer counting

@RayanChikhi on Twitter
"Rayan Chikhi" on Google for my web page
NGS FUTURE

PacBio Longer reads (5 kbp), low throughput, accuracy not a problem anymore. Great for gap-filling today.

Nanopore No data yet. Possibly very long reads (10 kbp), very low throughput. Won’t replace Illumina for all applications

Illumina Will remain medium-sized reads. Currently the only player for large genomes, RNA-seq, metagenomics.
DNA assembly is still a difficult problem in 2013.

1. High computational resources

2. Hard to find an optimal solution

Conclusions of the GAGE benchmark (2012): in terms of assembly quality, there is no single best de novo assembler
DNA assembly is still a difficult problem in 2013.

1. Efficiency: still an area of active research. We're making progress..

2. Quality: making progress empirically (see SOAPdenovo2 [2013]).
What is a de novo assembly
- Description
- Short Exercice

Some useful assembly theory
- Graphs
- Contigs construction
- Exercice

How to evaluate an assembly
- Reference-free metrics
- Metrics using a reference
- Exercice

Assembly software
- DNA-seq assembly
- RNA-seq assembly
- Tips
- Exercice

Minia
- Analysis
- Assembly aspects
- Results

Short case study: assembling a human genome with Minia
Definition of an **assembly**
(a trickier question than it seems)

Set of sequences which best approximate the original sequenced material.
Example of a reference genome (top), and an assembly aligned to it (bottom, sequences separated by blue lines).

Simple facts, the aligned assembly is:
- smaller than the reference,
- fragmented
Some vocabulary:

- **Read**: Any sequence that comes out of the sequencer
- **Paired read**: $read_1$, gap ≤ 500 bp, $read_2$
- **Mate-pair**: $read_1$, gap ≥ 1 kbp, $read_2$
- **Single read**: Unpaired read
- **k-mer**: Any sequence of length k
- **Contig**: gap-less assembled sequence
- **Scaffold**: sequence which may contain gaps (N)
Here is a set of reads:

TACAGT
 CAGTC
 AGTCA
 CAGA

1. How many k-mers are in these reads (including duplicates), for $k = 3$?
2. How many distinct k-mers are in these reads?
 - (i) for $k = 2$
 - (ii) for $k = 3$
 - (iii) for $k = 5$
3. It appears that these reads come from the (toy) genome TACAGTCAGA. What is the largest k such that the set of k-mers in the genome is exactly the set of k-mers in these reads?
4. For any value of k, what is a mathematical relation between N, the number of k-mers (incl. duplicates) in a sequence, and L, the length of that sequence?
EXERCICE (SOLUTION)

Here is a set of reads:

TACAGT
 CAGTC
 AGTCA
 CAGA

1. How many k-mers are in these reads (including duplicates), for $k = 3$?
 12

2. How many distinct k-mers are in these reads?
 ▶ (i) for $k = 2$, 7
 ▶ (ii) for $k = 3$, 7
 ▶ (iii) for $k = 5$, 4

3. It appears that these reads come from the (toy) genome TACAGTCAGA. What is the largest k such that the set of k-mers in the genome is exactly the set of k-mers in these reads? 3

4. For any value of k, what is a mathematical relation between N, the number of k-mers (incl. duplicates) in a sequence, and L, the length of that sequence? $N = L - k + 1$
Plan

What is a de novo assembly
 Description
 Short Exercice

Some useful assembly theory
 Graphs
 Contigs construction
 Exercice

How to evaluate an assembly
 Reference-free metrics
 Metrics using a reference
 Exercice

Assembly software
 DNA-seq assembly
 RNA-seq assembly
 Tips
 Exercice

Minia
 Analysis
 Assembly aspects
 Results

Short case study: assembling a human genome with Minia
A **graph** is a set of nodes and a set of edges (directed or not).
Overlaps between reads is the fundamental information used to assemble. Graphs permit to represent these overlaps.

Two different types of graphs for sequencing data are known:

- de Bruijn graphs
 - Generally used with Illumina data
- string graphs
 - Generally used with 454 data
A de Bruijn graph for a fixed integer k:

1. **Nodes** = all k-mers (k-length sub-strings) present in the reads.
2. For each $(k + 1)$-mer x present in the reads, there is an **edge** between the k-mer prefix of x and the k-mer suffix of x.

Exemple for $k = 3$ and a single read:

ACTG

ACT \rightarrow CTG
Example for many reads and still $k = 3$.

\begin{itemize}
 \item ACTG
 \item CTGC
 \item TGCT
\end{itemize}
What happens if we add redundancy?

ACTG
ACTG
CTGC
CTGC
CTGC
TGCT
TGCT

$\text{dBG, } k = 3:$

\[\text{ACT} \rightarrow \text{CTG} \rightarrow \text{TGC} \rightarrow \text{GCT} \]
How is a sequencing error impacting the de Bruijn graph?

ACTG
CTGC
CTGA
TGCT

dBG, $k = 3$:
What is the effect of a small repeat on the graph?

ACTG
CTGC
TGCT
GCTG
CTGA
TGAC

dBG, $k = 3$:

```
ACT -> CTG -> TGC
```

```
GAC -> TGA -> GCT
```

DE BRUIJN GRAPHS : REPEATS
Definition of an **overlap graph**. It is *almost* a string graph.

1. **Nodes** = reads.
2. Two nodes are linked by an **edge** if both reads overlap.

Example for $k = 3$ and a single read:

ACTG

ACTG

1. The definition of overlap is voluntarily fuzzy, there are many possible definitions.
Overlap graphs

Given $k > 0$, we say that r and r' overlap if a suffix of r of length $l > k$ is exactly a prefix of r' of similar length.

Overlap graph for $k = 3$,

- ACTGCT
- CTGCT (overlap of length 5)
- GCTAA (overlap of length 3)
A **string graph** is obtained from an overlap graph by removing redundancy:
- redundant reads (those fully contained in another read)
- transitivity redundant edges (if $a \rightarrow c$ and $a \rightarrow b \rightarrow c$, then remove $a \rightarrow c$)
Overlap graph for $k = 3$,

\[\text{ACTGCT} \rightarrow \text{CTGCT} \rightarrow \text{GCTAA} \]

String graph for $k = 3$,

\[\text{ACTGCT} \rightarrow \text{GCTAA} \]

The read CTGCT is contained in ACTGCT, so it is redundant.
On the same example, compare the de Bruijn graph with the string graph:

ACTGCT
CTGCTA
GCTAA

String graph, $k = 3$:

\[\text{ACTGCT} \rightarrow \text{CTGCTA} \rightarrow \text{GCTAA} \]

de Bruijn graph, $k = 3$:

\[\text{ACT} \rightarrow \text{CTG} \rightarrow \text{TGC} \rightarrow \text{GCT} \rightarrow \text{CTA} \rightarrow \text{TAA} \]
Let’s add an error:

ACTGCT
CTGATA
GCTAA

String graph, $k = 3$:

ACTGCT
CTGATA
GCTAA

de Bruijn graph, $k = 3$:

ACT → CTG → TGC → GCT → CTA → TAA

TGA → GAT → ATA
How to "fix" the string graph?
→ use a relaxed definition of overlaps.
String graph where overlaps may ignore 1 error, $k = 3$:

```
ACTGCT → CTGATA → GCTAA
```

de Bruijn graph, $k = 3$:

```
ACT → CTG → TGC → GCT → CTA → TAA
TGA → GAT → ATA
```
So, which is better?

- String graphs capture whole read information
- de Bruijn graphs are conceptually simpler:
 - single node length
 - single overlap definition

Historically, string graphs were used for long reads and de Bruijn graphs for short reads.
Assembly in theory
[Nagarajan 09]
Return a path of *minimal length* that traverses *each node at least once*.

Illustration

The only solution is `GATTACATTACAA`.

Because of ambiguities and low-coverage region, a single path is almost never found in theory, and is really never found in practice.

Example of ambiguities

Assembly in practice

Return a set of paths covering the graph, such that all possible assemblies contain these paths.

Solution of the example above

The assembly is the following set of paths:

\{ACTGA, TGACC, TGAGTGA, TGAATGA\}
Contigs construction from a graph (de Bruijn or string).

The naive way is to enumerate all *node-disjoint simple paths*.

Node-disjoint means that two different paths cannot share a node. (Edge-disjoint simple paths also work).
dBG, $k = 3$:

Contigs:

![Diagram showing contigs construction example with sequences ACT, CTG, TGC, GAC, TGA, GCT.]
dBG, $k = 3$:

Contigs:
dBG, \(k = 3 \):

Contigs:
CTGCT
dBG, $k = 3$

Contigs:
CTGCT
dBG, $k = 3$:

Contigs:
- CTGCT
- TGAC
- CTG
- TGC
- GAC
- TGA
- GCT
CONTIGS CONSTRUCTION EXAMPLE

\[\text{dBG, } k = 3 : \]

Contigs:
- CTGCT
- TGACT
- TGAC
- ACT

Graph:
- Nodes: ACT, CTG, TGC, GAC, TGA, GCT
- Edges: ACT to CTG, CTG to TGC, TGC to GCT, GCT to TGA, TGA to GAC, GAC to ACT
HOW AN ASSEMBLER WORKS

[Velvet, ABysS, SOAPdenovo, SGA ..]

1) Construct a graph from the reads.

Assembly graph with variants & errors

2) Likely sequencing errors are removed.

3) Known biological events are removed.

4) Finally, simple paths (i.e. contigs) are returned.
Because sequencing isn’t strand-directed:

In assembly, we always identify a read with its reverse complement.

E.g: AAA = TTT, ATG = CAT
In this exercice, for simplicity, ignore reverse complements.
Reference genome : TACAGTCAGA.
Reads :

TACAGT
CAGTC
AGTCA
TCAGA

1. Construct the de Bruijn graph for $k = 3$.
 (Reminder : nodes are k-mers and edges correspond to $(k + 1)$-mers)
2. How many contigs can be created ? (stopping at any branching)
3. At which value of k is there a single contig (i.e., no branching) ?
4. (bonus) Find a mathematical relationship between k_a, the smallest value of k for which a genome can be assembled into a single contig, and ℓ_r, the length of the longest exactly repeated substring in that genome.
EXERCICE (SOLUTION)

In this exercice, for simplicity, ignore reverse complements. Reference genome : TACAGTCAGA.
Reads :

- TACAGT
- CAGTC
- AGTCA
- TCAGA

1. Construct the de Bruijn graph for $k = 3$.
 (Reminder : nodes are k-mers and edges correspond to $(k + 1)$-mers)

2. How many contigs can be created ? (stopping at any branching) 3

3. At which value of k is there a single contig (no branching) ? 4

4. Find a mathematical relationship between k_a, the smallest value of k for which a genome can be assembled into a single contig, and ℓ_r, the length of the longest exactly repeated substring in that genome.

 $$k_a = \ell_r + 1$$
Plan

What is a de novo assembly
 Description
 Short Exercise

Some useful assembly theory
 Graphs
 Contigs construction
 Exercise

How to evaluate an assembly
 Reference-free metrics
 Metrics using a reference
 Exercise

Assembly software
 DNA-seq assembly
 RNA-seq assembly
 Tips
 Exercise

Minia
 Analysis
 Assembly aspects
 Results

Short case study: assembling a human genome with Minia
Preamble: There is no trivial total order (i.e. ranking) between assemblies.

Why? > 2 independent criteria to optimize (e.g., total length, and average size of assembled sequences)

Example Would you rather have an assembly with good coverage and short contigs, or an assembly with mediocre coverage and long contigs?
- Number of contigs/scaffolds
- Total length of the assembly
- Length of the largest contig/scaffold
- Percentage of gaps in scaffolds (‘N’)
- N50 of contigs/scaffolds
- Overlooked but very important: internal consistency
- Number of predicted genes
Reference-free metrics : N50

N50 = Largest contig length at which longer contigs cover 50% of the total *assembly* length

NG50 = Largest contig length at which longer contigs cover 50% of the total *genome* length

If you didn’t know N50, write down the definition down, there will be an exercise ;)

A practical way to compute N50 :

- Sort contigs by decreasing lengths
- Take the first contig (the largest) : does it cover 50% of the assembly ?
- If yes, this is the N50 value. Else, try the next one (the second largest), and so on..
REFERENCE-FREE METRICS: INTERNAL CONSISTENCY

Rarely appears in assemblers articles but extremely useful in de novo projects.

Internal consistency: Percentage of paired reads correctly aligned back to the assembly (*happy pairs*).

Allows to locate certain types of misassemblies (mis-joins).

Recent tools enable to compute this metric:

- REAPR \(^2\)
- FRCurve \(^3\)

[F. Vezzi (Plos One) 2013]

2. Google : REAPR assembly
3. Google : FRCurve
INTERNAL CONSISTENCY : EXAMPLE

Hawkeye software
METRICS USING A REFERENCE: COVERAGE

Given an assembly aligned to a reference.

Coverage Percentage of bases in the reference which are covered by the alignment.
Also requires that the assembly is aligned to a reference.

- Number of substitutions.
- Number of small indels
- Number *misjoins*, i.e. splitted contigs or scaffolds
Is there a “global“ accuracy metric?

Allpaths : % of blocks (< 10kbp) aligning with > 90% identity.

Assemblathon 1 : Number of structural errors (indels, misjoins) in the adjacency graph [Paten 11].

QUAST : Number of splitted alignments.
ASSEMBLY QUALITY SOFTWARE

In order of preference:

1. With or without a reference genome, the QUAST software is highly recommended.
2. Assemblathon and GAGE evaluation scripts
3. Many perl/python scripts can compute basic reference-free metrics (N50).
Here are two assemblies, aligned to the same reference:

Ref: [20]

Asm 1: [6, 2, 8, 3]

Asm 2: [5, 9, 2, 2]

- For each, compute the following metrics:
 - Total size of the assembly, N50, NG50 (bp)
 - Coverage (%)

- Which one is better than the other?
Here are two assemblies, aligned to the same reference:

- For each, compute the following metrics:
 - Total size of the assembly (19 bp, 18 bp), N50 (6 bp, 9 bp), NG50 (6 bp, 5 bp)
 - Coverage (%) (90, 90)

- Which one is better than the other? (I would say first one)
Plan

What is a de novo assembly
 Description
 Short Exercice

Some useful assembly theory
 Graphs
 Contigs construction
 Exercice

How to evaluate an assembly
 Reference-free metrics
 Metrics using a reference
 Exercice

Assembly software
 DNA-seq assembly
 RNA-seq assembly
 Tips
 Exercice

Minia
 Analysis
 Assembly aspects
 Results

Short case study: assembling a human genome with Minia
- Before Illumina Hi-Seq: Newbler for 454 (reads ≥ 200 bp), any de Bruijn graph assembler for Illumina (reads < 100 bp).

- Now and later: 150 bp reads, **high** coverage, mate pairs: grey area for assembly techniques.
<table>
<thead>
<tr>
<th>Assembler</th>
<th>Method</th>
<th>Error Corr.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euler</td>
<td>de Bruijn</td>
<td>pre-assembly</td>
<td>Pioneer</td>
</tr>
<tr>
<td>Velvet</td>
<td>de Bruijn</td>
<td>in-assembly</td>
<td>(still) Popular</td>
</tr>
<tr>
<td>ABySS, CLC-bio, Meraculous, SOAPdenovo</td>
<td>de Bruijn</td>
<td>in-assembly</td>
<td>Parallel, large genomes</td>
</tr>
<tr>
<td>Allpaths LG</td>
<td>de Bruijn</td>
<td>pre-assembly</td>
<td>Needs short/long inserts</td>
</tr>
<tr>
<td>IDBA</td>
<td>de Bruijn</td>
<td>pre-assembly</td>
<td>Multi-k</td>
</tr>
<tr>
<td>Newbler, Celera</td>
<td>String</td>
<td>in-assembly</td>
<td>Long reads</td>
</tr>
<tr>
<td>Ray</td>
<td>de Bruijn</td>
<td>in-assembly</td>
<td>Parallel short/long reads</td>
</tr>
<tr>
<td>SGA, Fermi</td>
<td>String</td>
<td>pre-assembly</td>
<td>Compressed, promising</td>
</tr>
<tr>
<td>Minia</td>
<td>de Bruijn</td>
<td>in-assembly</td>
<td>ultra-low memory</td>
</tr>
</tbody>
</table>
DE NOVO METAGENOMIC/RNA ASSEMBLERS

de novo metagenomic assemblers:

- **Genovo**: Pioneer. Assembles up to 10^5 454 reads\(^4\).
- **MetaVelvet**: based on Velvet\(^5\)
- **Meta-Idba**: based on IDBA..
- **RayMéta**: based on Ray..

Too early to tell a preferred method.

de novo RNA assemblers:

- **Oases**: Pioneer. A post-processing step for Velvet.
- **Trinity**: *de facto* reference method\(^6\)
- **Trans-Abyss**: based on ABYSS
- **SOAP-Trans**: based on SOAPdenovo

5. http://metavelvet.dna.bio.keio.ac.jp/
PERSONAL EXPERIENCE (FOR ILLUMINA ASSEMBLY)

If I had to choose one..

Your data follows the Broad recipe Allpaths-LG

General purpose SOAPdenovo2

If not enough memory Minia

454 Newbler

RNA-Seq Trinity

Metagenome RayMéta (?)
Goal: reconstruct mRNA sequences
RNA-Seq Assembly

- Short contigs
- Uneven coverage
- Contigs are re-used

average mRNA length: 2 kbp
varying expression levels
alternative splicing
Despite these differences, DNA-seq assembly methods apply:

- Construct a de Bruijn graph (same as DNA)
- Output contigs (same as DNA)
- Allow to re-use the same contig in many different transcripts (new part)
Quick overview of Trinity steps:

- Inchworm
- Chrysalis
- Butterfly
- **Inchworm** de Bruijn graph construction, part 1
- **Chrysalis** de Bruijn graph construction, part 2, then partitioning
- **Butterfly** Graph traversal using reads, isoforms enumeration
- **Inchworm** - de Bruijn graph construction, part 1

Using k-mers, construct contigs carelessly.

Contigs might correspond to the most abundant isoform, but no guarantee.
RNA-Seq Assembly: Trinity - 2

- **Chrysalis** - de Bruijn graph construction, part 2, then reads partitioning

By overlapping Inchworm contigs, construct the true de Bruijn graph.

Then,

Partition the graph and output the reads aligning to each partition.
- **Butterfly** - Graph traversal using reads, isoforms enumeration

Traverse each de Bruijn graph partition to output isoforms

Difference with DNA-seq assembly: isoforms are, by definition, not \(k \)-mer-disjoint.
General assembly advice follows
There is no optimal \(k \)-mer size, it varies with each dataset.

A few things to keep in mind:

- **Low limit**: For common genomes sizes (10 Mbp - 1 Gbp), there is a high chance that any \(\approx 12 \)-mers will be repeated in many locations \((4^{12} = 16 \cdot 10^6) \).

- **High limit**: with very good error-correction, the Broad typically uses \(k = |\text{readlen}| - 1 \).

- **Ideally**, \(k \) should be the highest value such that \(\geq 2 \) error-free \(k \)-mer is present in the reads.

- If you have time, re-assemble with many different \(k \) values.
Except if you have excellent coverage, error-correction may help getting better assemblies.

- **Allpaths-LG stand-alone error corrector** (highly recommended)
- Quake
- **SOAPdenovo stand-alone corrector**

A good assembly is typically done with several pre-correction stages:

- low-quality reads removal
- trimming
- overlapping paired reads merged into single reads
Scaffolding is the step that maps paired reads to contigs in order to create scaffolds.

If an assembly software returns scaffolds, that means that it includes its own scaffolder (SOAP, SGA, ABySS, Velvet..).

Several stand-alone scaffolders are also developed, and some give good practical results.

E.g. : SSPACE (generally outperforms Bambus 2, Opera, etc..) I haven’t tried it yet, but SOAPdenovo2 scaffolder looks promising.
A typical assembly pipeline

1. Raw reads
2. Reads error-correction (Error-corrector)
3. Single reads indexing (Assembler)
4. Single reads assembly
5. Paired reads scaffolding (Scaffolder)
6. Scaffolds gap-closing (Gapcloser)
7. Contigs, scaffolds
Reads:

1. AGTC
2. TCAA
3. AATT
4. GTCT
5. TATT
6. TCTA

1. Assemble these reads
2. What was special about this genome?
1. AGTCAATT
 AGTCTATT

2. "diploid genome", 1 SNP
Plan

What is a de novo assembly
 Description
 Short Exercice

Some useful assembly theory
 Graphs
 Contigs construction
 Exercice

How to evaluate an assembly
 Reference-free metrics
 Metrics using a reference
 Exercice

Assembly software
 DNA-seq assembly
 RNA-seq assembly
 Tips
 Exercice

Minia
 Analysis
 Assembly aspects
 Results

Short case study: assembling a human genome with Minia
How the assembler Minia works:

1. Storing the de Bruijn graph in memory
2. Actual contigs construction procedure
de Bruijn graph

Nodes are k-mers, edges are $(k - 1)$-overlaps between nodes.

GAT \rightarrow ATT \rightarrow TTA \rightarrow TAC \rightarrow ACA \rightarrow CAA

Only **nodes** need to be encoded, as **edges** are inferred.

How to encode the de Bruijn graph using as little space as possible?

Memory usage

- Explicit list: $2k \cdot n$ bits
- Self-information of n nodes:

$$\log_2 \binom{4^k}{n} \text{ bits}$$

(illustration for $k = 25$)

- 50 bits per node
- 20 bits per node.

[Idury, Waterman 95] [Conway, Bromage 11]
Bloom filter

Bit array to represent any set with a “precision” of ϵ.

- A proportion ϵ of elements will be wrongly included (false positives).

To represent a set of n elements, requires $\approx 1.44 \log_2\left(\frac{1}{\epsilon}\right) \cdot n$ bits.

Storing k-mers in a Bloom filter:

<table>
<thead>
<tr>
<th>k-mer</th>
<th>hash value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATC</td>
<td>0</td>
</tr>
<tr>
<td>CCG</td>
<td>0</td>
</tr>
<tr>
<td>TCC</td>
<td>5</td>
</tr>
<tr>
<td>CGC</td>
<td>6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bloom filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Queries:
- Is the k-mer ATA (hash value 9) present? No.
- AAA (hash value 0) present? Yes, maybe: either a true or a false positive.
Bloom filter

Bit array to represent any set with a “precision” of ε.

- a proportion ε of elements will be wrongly included (*false positives*).

To represent a set of n elements, requires $\approx 1.44 \log_2\left(\frac{1}{\varepsilon}\right) \cdot n$ bits.

Storing k-mers in a Bloom filter:

<table>
<thead>
<tr>
<th>k-mer</th>
<th>hash value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATC</td>
<td>0</td>
</tr>
<tr>
<td>CCG</td>
<td>0</td>
</tr>
<tr>
<td>TCC</td>
<td>5</td>
</tr>
<tr>
<td>CGC</td>
<td>6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Bloom filter

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Queries:
Is the k-mer ATA (hash value 9) present? **No.**
Bloom filter

Bit array to represent any set with a “precision” of ϵ.

- a proportion ϵ of elements will be wrongly included (*false positives*).

To represent a set of n elements, requires $\approx 1.44 \log_2 \left(\frac{1}{\epsilon} \right) \cdot n$ bits.

Storing k-mers in a Bloom filter:

<table>
<thead>
<tr>
<th>k-mer</th>
<th>hash value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATC</td>
<td>0</td>
</tr>
<tr>
<td>CCG</td>
<td>0</td>
</tr>
<tr>
<td>TCC</td>
<td>5</td>
</tr>
<tr>
<td>CGC</td>
<td>6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Bloom filter

```

1 0 0 0
0 0 0 0
0 0 0 0
```

Queries:

Is the k-mer ATA (hash value 9) present? **No**.

AAA (hash value 0) present? **Yes**, maybe: either a true or a false positive.
Set of nodes: \{TAT, ATC, CGC, CTA, CCG, TCC, GCT\}
Graph as stored in a Bloom filter:

Black nodes: true positives; Red nodes: false positives
Insight: to traverse the graph from true positive nodes, only a small fraction of the false positives need to be avoided (critical false positives, CFP).
Proposed method

Store nodes on disk for sequential enumeration, and in memory store the Bloom filter + the critical FPs explicitly.

<table>
<thead>
<tr>
<th>Bloom filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Nodes self-information:

\[
\lceil \log_2 \left(\frac{4^3}{7} \right) \rceil = 30 \text{ bits}
\]

Our structure size:

\[
10 + 3 \cdot 6 = 28 \text{ bits}
\]

Bloom + Crit. false pos.
Construction time (for n nodes)

Assume that k-mer arithmetic takes constant time.

- Bloom filter construction : $O(n)$
- cFP construction :
 - Enumeration of neighbors of all graph nodes, keeping only Bloom-positive neighbors : $O(n)$
 - Intersection between Bloom-positive neighbors and nodes, with limited memory usage : $O\left(\frac{k}{\log(k)} n\right)$
Optimal Bloom Filter Size

Structure size per k-mer, k=27

![Graph showing the structure size per k-mer with various line graphs representing Bloom Filter and cFP. The optimal size is marked near 13.2 bits per k-mer.]
Dependence on the parameter k

Optimal structure size per k-mer

- Total = Bloom Filter + cFP
- Bloom Filter
- cFP

Structure size (bits/k-mer)

k-mer size

0 20 40 60 80 100

0 5 10 15 20 25
The de Bruijn graph can be encoded using

\[
1.44 \log_2 \left(\frac{16k}{2.08} \right) + 2.08 \]

\text{Bloom cFP}

bits of memory per node.

\(k = 25 : 13 \) bits per node.

- Below the self-information (20 bits/node for \(k = 25 \))
- The part stored in memory doesn’t support enumeration of nodes, only traversal

Graph-based assemblers typically modify the graph to remove artifacts (variants, errors).

Is it possible to perform de novo assembly with this (immutable) structure?

→ Yes, using localized traversal. [RC DL, WABI 11]
Traverse the graph greedily, according to these rules:

Will traverse: variant sub-graphs

BFS from s until a depth of breadth 1 is reached, keeping breadth $< b$ and depth $< d$

Won’t traverse: long branches

BFS from s, breadth remains > 1 for depths $1..d$

Example: Whole graph
Localized Traversal

Traverse the graph greedily, according to these rules:

Will traverse: variant sub-graphs

BFS from s until a depth of breadth 1 is reached, keeping breadth $< b$ and depth $< d$

Won’t traverse: long branches

BFS from s, breadth remains > 1 for depths 1..d

Example: Start with an empty graph
Localized Traversal

Traverse the graph greedily, according to these rules:

Will traverse: variant sub-graphs

BFS from s until a depth of breadth 1 is reached, keeping breadth $< b$ and depth $< d$

Won’t traverse: long branches

BFS from s, breadth remains > 1 for depths $1..d$

Example: Pick a new node, construct the first portion
Traverse the graph greedily, according to these rules:

Will traverse: variant sub-graphs

BFS from s until a depth of breadth 1 is reached, keeping breadth \(< b \) and depth \(< d \)

Won’t traverse: long branches

BFS from s, breadth remains \(> 1 \) for depths 1..\(d \)

Example: Construct the second portion
Traverse the graph greedily, according to these rules:

Will traverse: variant sub-graphs

BFS from s until a depth of breadth 1 is reached, keeping breadth $< b$ and depth $< d$

Won’t traverse: long branches

BFS from s, breadth remains > 1 for depths 1..d

Example: Construct the third portion
k-mer counting
- Need to determine the set of **solid** nodes (seen \(\geq x \) times)
- Current methods (e.g. Jellyfish) require **more memory** than our structure
- We designed a constant-memory \(k \)-mer counting procedure

Graph traversal
- Nodes which have already been traversed need to be **marked**
- No extra information can be stored in our structure
- We used a **separate** hash table to remember if **branching** or **dead-end** nodes have already been visited.

Contigs construction
Consensus from each path obtained by localized traversal
What is a de novo assembly
 Description
 Short Exercice
Some useful assembly theory
 Graphs
 Contigs construction
 Exercice
How to evaluate an assembly
 Reference-free metrics
 Metrics using a reference
 Exercice
Assembly software
 DNA-seq assembly
 RNA-seq assembly
 Tips
 Exercice
Minia
 Analysis
 Assembly aspects
 Results
Short case study : assembling a human genome with Minia
ASSEMBLING A HUMAN GENOME WITH MINIA

Step 1: Data preparation

1. Download raw human genome reads from a public FTP server (SRX016231)
2. Decompress them
3. Create a list of all FASTQ files (HG_reads.txt)
Step 2: Running Minia

Command line:
./minia HG_reads.txt 27 5 3000000000 human_assembly
Step 3: Evaluate results

<table>
<thead>
<tr>
<th>Human genome assembly</th>
<th>Minia</th>
<th>C. & B.</th>
<th>ABySS</th>
<th>SOAPdenovo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of k chosen</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td>Contig N50 (bp)</td>
<td>1156</td>
<td>250</td>
<td>870</td>
<td>886</td>
</tr>
<tr>
<td>Sum (Gbp)</td>
<td>2.09</td>
<td>1.72</td>
<td>2.10</td>
<td>2.08</td>
</tr>
<tr>
<td>> 95% Accuracy (%)</td>
<td>94.6</td>
<td>-</td>
<td>94.2</td>
<td>-</td>
</tr>
<tr>
<td>Nb of nodes/cores</td>
<td>1/1</td>
<td>1/8</td>
<td>21/168</td>
<td>1/40</td>
</tr>
<tr>
<td>Time (wall-clock, h)</td>
<td>23</td>
<td>50</td>
<td>15</td>
<td>33</td>
</tr>
<tr>
<td>Memory (sum of nodes, GB)</td>
<td>5.7</td>
<td>32</td>
<td>336</td>
<td>140</td>
</tr>
</tbody>
</table>
CONCLUSION, WHAT WE HAVE SEEN

- What is a good assembly?
 - No total order
 - Main metrics: N50, coverage, accuracy
 - Use QUAST

- How are assemblies made?
 - Typically, using a de Bruijn graph or a string graph.
 - Errors and small variants are removed from the graph.
 - Contigs are just simple paths from the graph.

- Assembly software
 - Recommended software for Illumina data: SOAPdenovo2, Allpaths-LG
 - Plethora of other software for custom needs: Minia for low-memory, SGA for very accurate assembly, etc..
 - Recommended software for 454 data: Newbler, Celera

- A few tips
 - How to choose k: always try many values
 - Put the assembler inside a pipeline: error correction, scaffolding, gap-filling

- Case study
 - How to assemble a human genome with Minia