Orthology
Part I
concepts and implications
Toni Gabaldón
Centre for Genomic Regulation (CRG), Barcelona
Toni Gabaldón

Contact: tgabaldon@crg.es
Group website: http://gabaldonlab.crg.es
Science blog: http://treevolution.blogspot.com
Twitter: @gabaldonlab, @Toni_Gabaldon
Orthology

“concepts and implications”
organs in two species are homologous only if the same structure was present in their last common ancestor.
"the same organ in different animals under every variety of form and function" R. Owan

→ organs in two species are **homologous** only if the same structure was present in their last common ancestor
Analogous structures:
Similar function but independent origin.

Homologous as forelimbs
But
Analogous as wings
Extension of the concept of homology to sequences:

Two sequences are homologous if they share common ancestry
Important: Similarity and Homology

Similarity and homology are often confused. e.g. “the sequences are 50% homologous”, “these two sequences are highly homologous”

Why is this incorrect? Where does the confusion comes from?
Detour

Sequence similarity, homology detection and blast database queries

Are this two sequences **significantly** similar?
(i.e how likely is that such an alignment is the result of chance)
Score of a High Scoring Pair (HSP)
Alignment scores are sums of residue-pairing scores according to a Scoring Matrix.

	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V	X					
A	4																									
R	-1	5																								
N	-2	0	6																							
D	-2	-2	1	6																						
C	0	-3	-3	-3	9																					
Q	-1	1	0	0	-3	5																				
E	-1	0	0	2	4	2	5																			
G	0	-2	0	-1	-3	-2	-2	6																		
H	-2	0	1	-1	-3	0	0	-2	8																	
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	2	4															
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4															
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5														
M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5													
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6												
P	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7											
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4										
T	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-2	-1	1	5										
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11								
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7							
V	0	-3	-3	-3	-1	-2	-2	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4							
X	0	-1	-1	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-2	0	-2	-1	-1	-1	-1			
Distribution of scores in comparisons of random*-sequences

* considering the representation of the different amino acids (nucleotides) in a DataBase
The significance of each alignment is computed as a P value or an E value.

E value: Expectation value. The number of different alignments with scores equivalent to or better than S that are expected to occur in a database search by chance. The lower the E value, the more significant the score.

P value: The probability of an alignment occurring with the score in question or better. The p value is calculated by relating the observed alignment score, S, to the expected distribution of HSP scores from comparisons of random sequences of the same length and composition as the query to the database. The most highly significant P values will be those close to 0. P values and E values are different ways of representing the significance of the alignment.
E-value (Expectation value) = the number of sequences that would be expected to have that score (or higher) if the query sequence were compared against a database containing unrelated sequences.

E = \frac{m n}{2^s}

E-value = ranges from 0 to the number of sequences in the DB, and depends on the Database!!!
>ref|NP_114344.1| G NADH dehydrogenase subunit 5 [Macaca sylvanus]
Length=603

GENE ID: 803075 ND5 | NADH dehydrogenase subunit 5 [Macaca sylvanus]
(10 or fewer PubMed links)

Score = 796 bits (2056), Expect = 0.0, Method: Compositional matrix adjust.
Identities = 438/564 (77%), Positives = 478/564 (84%), Gaps = 0/564 (0%)

<table>
<thead>
<tr>
<th>Query</th>
<th>Sbjct</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>VNPNKNSYPHYVKSVASTFIISLFPTTMMFMCMDQEVIIISNWHWATTQTTQTLSSLSFKLD 83</td>
<td></td>
</tr>
<tr>
<td>+NPNK+ YP+YVK+ V FI SL TT++M L+QE II +WHW TQT L+LSFKLD</td>
<td></td>
</tr>
<tr>
<td>INFNNKKHLHYPNVTAVMYAFITSLSSTLYMFLNQETIIWSWHWMMTQTLSSLTLSFKLD 83</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query</th>
<th>Sbjct</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>YFSMMFIPVAPLFTVWSIMEFSLWYMNSDPNINQFFKYLLFLITMLILVTANNNLFQLFIG 143</td>
<td></td>
</tr>
<tr>
<td>YFSMMF P+AL TWSIMEFSLWYM+SDPNI+QFFKYLLFLITMLILVTANNNLFQ FIG</td>
<td></td>
</tr>
<tr>
<td>YFSMMFTPIALLTTWSIMEFSLWYMSSDPNIDQFFKYLLFLITMLILVTANNNLFQFIG 143</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query</th>
<th>Sbjct</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>WEGVGIMSFLLISWWYARADANTAQQAVLYNIRGDIQGILALAWFILHSNSWDPQQMAL 203</td>
<td></td>
</tr>
<tr>
<td>WEG+GIMSFLLISWW+AR DANTAQQAVLYNIRGDI IL +WF+LH NSWD QQM</td>
<td></td>
</tr>
<tr>
<td>WEGMGIMSFLLISWWHARTDANTAQQAVLYNIRGDIQLTTMTWFLHHYNSWDFQQMLA 203</td>
<td></td>
</tr>
</tbody>
</table>

E-value

Coverage over the query
Other aspects in Blast searches

- E-value depends on database (specially important when locally searching in small databases)
- Use of Low complexity filtering
- Why multiple HSPs in a hit
- PSI-Blast, HMMER searches
End of the detour
From homology to orthology

• Homologues are sequences derived from a common ancestor...

• What are then orthologues?.... and paralogues?

"Where the homology is the result of gene duplication so that both copies have descended side by side during the history of an organism, (for example, alpha and beta hemoglobin) the genes should be called paralogous (para = in parallel).

Where the homology is the result of speciation so that the history of the gene reflects the history of the species (for example alpha hemoglobin in man and mouse) the genes should be called orthologous (ortho = exact)."
homologs

orthologs

paralogs

orthologs

frog α chick α mouse α mouse β chick β frog β

α-chain gene

gene duplication

β-chain gene

early globin gene
Corollary:

• Orthology definition is purely on evolutionary terms (not functional, not synteny…)

• Orthology/paralogy defines a pair-wise relationship between two genes

• There is no limit on the number of orthologs or paralogs that a given gene can have (when more than one ortholog exist, there is nothing such as “the true ortholog”,)

• Many-to-Many orthology relationships do exist (co-orthology)

• No limit on how ancient/recent is the ancestral relationship of orthologs and paralogs

• Orthology is non-transitive (as opposed to homology)
Additional useful definitions

- **In-paralogs and out-paralogs** (Sohnhammer and koonin): It is defined relative to a given speciation event. In-paralogs are derived from duplications occurred subsequent to the speciation event and are therefore specific of one lineage. Out-paralogs are paralogs emerged from duplications occurred before the speciation. (Important: if you change the speciation events these relationships change)

- **Orthologous group (~Orthogroup):** Also defined relative to a speciation event. It is the complete set of genes in one of the lineages formed by a speciation event. (it includes orthologs and in-paralogs, so not all the genes in an orthologous group are orthologs to each other)
The effect of HGT: Xenology and pseudoparalogy
Orthology and multi-domain proteins

- Orthology was defined at the level of genes, but this is not always the smallest level of evolution: domains do constitute smaller units of evolution, due to gene fusion/fission and recombination.
Why predicting orthology is important?

- **Important implications for phylogeny:** only sets of orthologous genes are expected to reflect the underlying species evolution (although there are many exceptions)

- The most exact way of **comparing two (or more) genomes** in terms of their gene content. Necessary to uncover how genomes evolve.

- Implications for **functional inference:** orthologs, as compared to paralogs, are more likely to share the same function
Why predicting orthology is important?

- **Important implications for phylogeny**: only sets of orthologous genes are expected to reflect the underlying species evolution (although there are many exceptions).

- The most exact way of **comparing two (or more) genomes** in terms of their gene content. Necessary to uncover how genomes evolve.

- Implications for **functional inference**: orthologs, as compared to paralogs, are more likely to share the same function.

REALLY???, IS THIS TRUE IF SO, WHY IS THAT?
GO:0006915 (Apoptotic process)

A programmed cell death process which begins when a cell receives an internal (e.g. DNA damage) or external signal (e.g. an extracellular death ligand), and proceeds through a series of biochemical events (signaling pathways) which typically lead to rounding-up of the cell, retraction of pseudopodes, reduction of cellular volume (pyknosis), chromatin condensation, nuclear fragmentation (karyorrhexis), plasma membrane blebbing and fragmentation of the cell into apoptotic bodies. The process ends when the cell has died. The process is divided into a signaling pathway phase, and an execution phase, which is triggered by the former.
Do orthologs have more similar GO terms than paralogs?
Figure 1. The relationship between functional similarity and sequence identity for human-mouse orthologs (red) and all paralogs (blue).
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002514
Orthologs do **tend** to have a more similar function because duplications promote functional divergence.

However, orthologs do also may vary their functions with time.
Comparison of differences in tissue-specific patterns of expression across orthologs and paralogs.

Evidence for short-time divergence and long-time conservation of tissue-specific expression after gene duplication.

Huerta-Cepas J, Dopazo J, Huynen MA, Gabaldón T.

Orthology
Part II

Orthology prediction methods

Toni Gabaldón
Centre for Genomic Regulation (CRG), Barcelona
Classical approach: phylogenetic inference

- Build a gene tree
- Compare to the species tree
- Infer duplications and speciation events
- Assign orthology and paralogy relationships accordingly
Going genome-wide scale:
Everything must be done automatic and “blind”
Completely sequenced genomes
a) Best bidirectional hits
b) COG, MCL-clustering approach
c) InParanoid
d) Tree reconciliation
e) Species-overlap (PhylomeDB)
Similarity-based approaches (many more approaches):

- **Best Reciprocal Hits**
 - Detects all orthologies as one-to-one. Highly affected by paralogy. Low rate of false positives but high rates of false negatives.

 - The simplest and fastest method, still widely used
In-Paranoid.
Improved BRH to detect in-paralogs as well. Works well at the pairwise level. (multi-paranoid for multi-species comparisons)
Note:

Definition of **in-** and **out-paralogues** require the specification of a given **speciation-node** of reference
COG-like (used by many DBs like STRING)

Exploits multi-species information. Predicts clusters of orthologous groups (in-paralogs) not all pairs in a cluster are paralogs.

Can be used at different stringent levels
Clustering methods produce: orthologous groups

Equivalent to the earlier concept of sub-family

Orthologous groups = Group of sequences derived from a single gene in a common ancestor. They may include orthologs and in-paralogues.

Each orthologous group has implicit the specification of an ancestral species of reference (a speciation node).
How many orthologous groups? 3 at the level of vertebrates, 1 at the level of chordates
The definition of a reference ancestral species is just an approximation to the inherently hierarchical nature of gene family evolution: and is thus incomplete.

To alleviate this, many databases define orthologous groups at various hierarchical levels (e.g. Metazoa, Vertebrates, Mammals, Primates)
Methods based on phylogeny were not used at a large scale due to limitations in computational power (phylogenetics is costly).

However, these have changed recently, fast pipelines and algorithms are available:

Ensembl trees, PhylomeDB, TreeFam, etc..
Review

Large-scale assignment of orthology: back to phylogenetics?
Toni Gabaldón

Bioinformatics and Genomics Program, Center for Genomic Regulation, Doctor Aiguader, 88, 08003 Barcelona, Spain.
Email: tgalaldon@crg.es

Published: 30 October 2008

Abstract

Reliable orthology prediction is central to comparative genomics. Although orthology is defined by phylogenetic criteria, most automated prediction methods are based on pairwise sequence comparisons. Recently, automated phylogeny-based orthology prediction has emerged as a feasible alternative for genome-wide studies.
Our pipeline:

www.phylomedb.org

ETE: Environment for Tree Exploration
ete.cgenomics.org

MrBayes Tree
- Topology and branch length refinement.
- Branch support values.
- MrBayes v3.1.2 [9].

Maximum Likelihood trees
- Estimation of gamma distribution
- Try different evolutionary models ((JTT, WAG, Blosum62, VT, MtREV).

NJ Tree
- Quick but less accurate approach.
- Seed for ML trees.

Homologs search
- Smith-Waterman Blast search.
- E-value and overlap cut-offs.

Multiple Sequence Alignments
- Alignment reconstruction.
- Alignment trimming.

Salvador-Capella et al
Bioinformatics (2009).

http://trimal.cgenomics.org

Pipeline described in Huerta-Cepas et al
Genome Biology (2007)
Phylogeny-based methods

- General procedure: reconstruct the evolution of a gene family (phylogenetics), detect duplication and speciation nodes and predict orthology and paralogy accordingly.
- Two main methods for predicting duplication and speciation nodes from a tree:
 - Species tree reconciliation (RIO, Ensembl)
 - Species-overlap algorithms
Reconciliation with the species tree readily provides you information on speciation and duplication nodes in a tree.

It works when these two assumptions are correct:

A) We know the true species tree

B) The gene tree is correct and reflects the species evolution
Uncertainty in species trees and topological variability in gene trees

a

Coelomata

b

Ecdysozoa

c
What percentage of gene trees from the human phylome support each topology?

Similar results for

- Primates
- Rodents
- Laurasatheria
The tree vs the forest:

Comparison of a fungal species tree with the topological variability of the fungal phylome

Marcet-Houben M and Gabaldón T, 2009
PLoS ONE 4(2): e4357
This large-degree of topological variability might be in part due to phylogenetic artifacts, insufficient phylogenetic signal, etc. But also to real evolutionary processes that render a gene tree different from a species tree: lineage sorting, gene conversion, etc.

In any case: strict interpretation of gene and species trees will result in many incorrect predictions.
To deal with topological variability we implemented a species-overlap algorithm (described in Huerta-Cepas et al. (2007) The human phylome. Genome Biology)

Our algorithm

- We calculate a species overlap score for every node.

Species common to both partitions / sum of the species in both partitions

- We only need a rough species tree to set an outgroup.
The species-overlap algorithm (PhylomeDB) is highly accurate and less affected by gene tree/species tree artifacts than tree-reconciliation.

Tree reconciliation / species overlap

T60 orthology prediction benchmark

![Graph showing orthology prediction](image)

Figure 2. Comparison of different orthology inference algorithms. The synteny based and manually curated orthology predictions available at YGOB database [18] is taken as a golden set to compute the number of true positives (TP), false positives (FP) and false negatives (FN) yielded by each method. For each method, the sensitivity $S = TP/(TP+FN)$ and the positive predictive value $P = TP/(TP+FP)$ are computed.

doi:10.1371/journal.pone.0004357.g002
The species-overlap algorithm (*PhylomeDB*) is highly accurate and less affected by gene tree/species tree artifacts than tree-reconciliation.

Benchmark based on curated dataset (Huelsen et al.)

Blast based / phylogeny-based

Welcome to PhylomeDB.

PhylomeDB is a public database for complete collections of gene phylogenies (phylogomes). It allows users to interactively explore the evolutionary history of genes through the visualization of phylogenetic trees and multiple sequence alignments. Moreover, phylomeDB provides genome-wide orthology and paralogy predictions which are based on the analysis of the phylogenetic trees. The automated pipeline used to reconstruct trees aims at providing a high-quality phylogenetic analysis of different genomes, including Maximum Likelihood or Bayesian tree inference, alignment trimming and evolutionary model testing. PhylomeDB includes also a public download section with the complete set of trees, alignments and orthology predictions.
MetaPhOrs
(Meta-Phylogeny-Based-Orthologs)

Use existing tree repositories
Reconstruct trees for orthologous groups
Integrate and use consistency across datasets as a proxy of reliability
result: phylogeny-based predictions across 800 genomes with a confidence score

Pryszcz et al. (NAR, 2011)
http://orthology.phylomedb.org

Give me all orthologs for a list of IDs

Give me all orthologs between Human and Mouse

Give me all orthologs to TP53

Blast my sequence and give me its orthologs

* Where it says orthologs, you can place paralogs instead!
Confidence score [0-1] = fraction of independent trees that support this association

<table>
<thead>
<tr>
<th>Target species</th>
<th>H. sapiens (co-orthologs (CS))</th>
<th>Target orthologs</th>
<th>CS</th>
<th>Evidence level</th>
<th>Trees</th>
<th>PhylomeDB</th>
<th>CS / EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyrthosiphon plum</td>
<td>4 co-orthologs</td>
<td>Phy0000YFHA</td>
<td>0.833</td>
<td>3</td>
<td>6</td>
<td>0.833 / 3</td>
<td></td>
</tr>
<tr>
<td>Aedes aegypti</td>
<td>4 co-orthologs</td>
<td>Q171M5</td>
<td>1.000</td>
<td>2</td>
<td>3</td>
<td>1.000 / 1</td>
<td></td>
</tr>
<tr>
<td>Anopheles gambiae</td>
<td>4 co-orthologs</td>
<td>Q7QAB9</td>
<td>0.833</td>
<td>4</td>
<td>6</td>
<td>0.800 / 3</td>
<td></td>
</tr>
<tr>
<td>Aps mellifera</td>
<td>3 co-orthologs</td>
<td>Phy000ZPX5</td>
<td>0.667</td>
<td>1</td>
<td>3</td>
<td>0.667 / 1</td>
<td></td>
</tr>
<tr>
<td>Bombyx mori</td>
<td>3 co-orthologs</td>
<td>Phy0000VIB2</td>
<td>1.000</td>
<td>2</td>
<td>3</td>
<td>1.000 / 2</td>
<td></td>
</tr>
<tr>
<td>Bos taurus</td>
<td>Phy000856J_HUMAN (1.00)</td>
<td>P67939</td>
<td>1.000</td>
<td>4</td>
<td>7</td>
<td>1.000 / 1</td>
<td></td>
</tr>
<tr>
<td>Branchiostoma florid</td>
<td>3 co-orthologs</td>
<td>C3XJ2U</td>
<td>1.000</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 co-orthologs</td>
<td>C3YXH3</td>
<td>1.000</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 co-orthologs</td>
<td>C3ZW1</td>
<td>1.000</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
“Estoy enganchado al metaphors como un drogata al caballo--y hoy parece que tienen el servidor colgado--porfa diselo a quien se encargue porque necesito mirar cosas ahi.”

Our best feedback ever.

(Received last week from a famous Immunologist.)
¿With over 30 orthology databases, based on various methods, which ones to choose?

- Different taxonomic focuses
- Different methodologies
- Different outputs (pairwise relationships, groups, etc)
- Different interfaces
- Different accuracies (how to benchmark this?)
What about paralogy?

Most pairwise methods focus on orthologs, only in-paralogs are taken into account sometimes.

Phylogeny-based methods readily inform both on orthology and paralogy.

They also provide information on the possible date of the duplication (topological dating)
Duplication at the base of vertebrates

Vertebrates

Drosophila melanogaster

Homo sapiens
Pan troglodytes
Mus musculus
Rattus norvegicus
Canis familiaris
Bos taurus
Takifugu rubripes
Tetraodon nigroviridis
Danio rerio

Mus musculus
Rattus norvegicus
Homo sapiens
Canis familiaris
Bos taurus
Danio rerio
Takifugu rubripes
Tetraodon nigroviridis

Danio rerio
Takifugu rubripes
Tetraodon nigroviridis
Pan troglodytes
Homo sapiens
Canis familiaris
Rattus norvegicus
Mus musculus

Ciona intestinalis

Ciona-specific duplication
Comparison of topological dating vs dS