Why is it useful to know a programming language when doing phylogenomics?
Sequences obtained from UniProt

How can I get my sequences to have a shorter, more informative, header?
You're interested in a group of genes that perform a certain metabolic function.

To study their evolution you have reconstructed a gene tree for every gene in the pathway.

You have found something interesting in the trees and now you want to put them nicely for your paper
Python can help us create images that would otherwise take a lot of time
A phylome is the complete collection of phylogenetic trees for each gene encoded in a genome. We can obtain a lot of data from it, but it implies working with a huge amount of trees.

You will probably need a tree manipulating software to get any kind of information from it.
For those of you that would like to learn python, here are two tutorials:

http://www.cmbi.ru.nl/pythoncourse/

http://cscircles.cemc.uwaterloo.ca/

For those of you already know how to program in python: ETE
A Python framework for the analysis and visualization of trees.

from ete3 import Tree

```
from ete3 import Tree

tree = Tree("((A,B), D);'

print tree
#
# /
#
# /| |
# /-A
# /
# /
A = tree & "A"
A.up.show()
```

Trees as Python objects
Load, create, traverse, search, prune, or modify hierarchical tree structures with ease using the ETE Python API.

Programmatic tree visualization
Get full control of your tree images. Browse them interactively or render SVG, PNG of PDF images.

Tree annotation
Custom node attributes can be rendered as graphical elements. Choose among external images, charts, symbols, text labels, and more!

Jupyter notebook support
Prototype your methods using the Jupyter notebook framework including inline visualization of trees.

http://etetoolkit.org/
What is ETE?

- ETE (Environment for Tree Exploration) is a package of tools to work with trees in a programmatic way.
- We need some simple concepts of scripting programming.
- There are other programming toolkits with more specific scopes: (DendroPy, BioPython, BioPerl).
ETE will allow you to:

- Read and write newick format
- Allows for node annotation
- Manipulate large tree structures
- Calculate distances among nodes
- Re-root trees
- Search nodes and partitions
- Iterate along the tree topology
- Create nice tree images
- And a lot more...
Tree Basics

A phylogenetic tree can be uploaded in ETE and this will create a tree object.

In ETE a tree object is nothing more than a group of tree nodes connected in a hierarchical way.

To create a new tree object in ETE you only need to call the Tree() command.

```python
import ete3
t = ete3.Tree()
```

This will just create an empty tree node.

You can upload trees from either a file or a string:

```python
t = ete3.Tree("file_name")
t = ete3.Tree("((A,B),C);")
```

You can also write the tree either on the screen or into a file

```python
t = ete3.write()
t = ete3.write(outfile="file_name")
```
Tree Basics

ETE also includes a visualizer that allows you to look at your tree:

```
t.show()
```

The window is interactive and will allow you to manually check out information and modify the tree if you want.
What is the difference between a Tree and a PhyloTree in ETE?

A PhyloTree includes all the options of a Tree but includes many more that are strictly designed to work with phylogenetic trees.

For a PhyloTree we will need to provide the species information. By default ETE will assume that the first three letters of each leaf indicate the species.

t= ete3.PhyloTree("((Prot1_Human,Prot1_Chimp),Prot1_Rat);")

Species will be: Pro for all leaves.

To define a new way to get the species names:

```python
def species_name(node):
    return node.split("_")[1]
```

This small function says that each name should be split by the "_" and the second element should be returned.

t=ete3.PhyloTree("((Prot1_Human,Prot1_Chimp),Prot1_Rat);",sp_naming_function=species_name)