“The double helix is indeed a remarkable molecule. Modern man is perhaps 50,000 years old, civilization has existed for scarcely 10,000 years and the United States for only just over 200 years; but DNA and RNA have been around for at least several billion years.

All that time the double helix has been there, and active, and yet we are the first creatures on Earth to become aware of its existence.”

Francis Crick (1916–2004)
History of DNA and modern approaches to sequencing

Konrad Paszkiewicz

January 2017
Contents

• A short history of DNA

• Review of first generation sequencing techniques

• Short-read second generation sequencing technology
 – Illumina

• Third generation single molecule sequencing
 – PacBio
 – Oxford Nanopore
“DNA is a stupid molecule”

Max Delbruck

“Never under-estimate the power of ... stupidity”

Robert Heinlein

“It was believed that DNA was a stupid substance, a tetranucleotide which couldn't do anything specific”

Max Delbruck
The first person to isolate DNA

• Friedrich Miescher
 – Born with poor hearing
 – Father was a doctor and refused to allow Friedrich to become a priest
• Graduated as a doctor in 1868
 – Persuaded by his uncle not to become a practising doctor and instead pursue natural science
 – But he was reluctant...
Biology PhD angst in the 1800s

“I already had cause to regret that I had so little experience with mathematics and physics... For this reason many facts still remained obscure to me.”

His uncle counselled:

“I believe you overestimate the importance of special training...”

Friedrich Miescher
1869 - First isolation of DNA

- Went to work in Felix Hoppe-Seyler’s laboratory in Tubingen, Germany
 - The founding father of biochemistry and focussed on the study of protein
 - The lab was one of the first to crystallise haemoglobin and describe the interaction between haemoglobin and oxygen using spectroscopy
 - Also played host Paul Ehrlich who later went on to develop gram staining and immunological advances
- Freidrich’s work on DNA was regarded as a side-project
- Freidrich extracted ‘nuclein’ on cold winter nights
 - Initially from human leukocytes extracted from bandage pus from the local hospital filled with soldiers from the Austro-Prussian war
 - Later from salmon sperm
Meischer’s isolation technique

- Cells from surgical bandages or salmon sperm
- Alcohol to remove outer cell membrane
- Pepsin from pig stomachs
- Basic solution to dissolve nuclein in the nucleus
- Acid solution to precipitate the nuclein
- Difficult to do without also precipitating bound protein

Biology PhD angst in the 1800s

His student remembered:

“Friedrich failed to turn up for his own wedding. We went off to look for him. We found him quietly working in his laboratory.”

“I go at 5am to the laboratory and work in an unheated room. No solution can be left standing for more than 5 minutes... Often it goes on until late into the night.”

Friedrich Miescher
1874 - First hints to composition

- By 1874 Meischer had determined that nuclein was
 - A basic acid
 - High molecular weight
 - Nuclein was bound to ‘protamin’
- Came close to guessing its function
 - “If one wants to assume that a single substance is the specific cause of fertilisation, the one should undoubtedly first and foremost consider nuclein”
 - Later discarded the idea because he thought it unlikely that nuclein could encode sufficient information
- He returned to working on his former supervisor’s haemoglobin work and made the discovery that carbon dioxide rather than oxygen regulated breathing
1881 - Discovering the composition of nuclein

- Kossel worked in the same lab as Freidrich Miescher
- Wanted to relate chemical composition to biological function

- Discovered fundamental building blocks of nuclein
 - Adenine, Cytosine, Guanine, Thymine, and Uracil
 - Identified histone proteins and that nuclein was bound to histone in the nucleus
 - By observing cell division inferred that nuclein was not used for energy storage but was linked to cell growth
1890s – Hints at the molecular basis of heredity

• How are characteristics transmitted between generations?

• Lots of theories
 – Stereo-isomers
 – Asymmetric atoms
 – Complex molecules

• Realisation that hereditary information is transmitted by one or more molecules

• 1893 August Weismann – germ plasm theory

• 1894 Eduard Strasburger – “nuclei from nuclei”
1900 - What we knew

Known

- Distinction between proteins and nucleic acids
- Somehow nuclein was involved in cell growth
- Somehow the nucleus was involved in cell division

Unknown

- Mendel’s lost laws
- Base composition of nucleic acids
- Role of the nucleus
- Distinction between RNA and DNA
- Significance of chromosomes
- That enzymes were proteins
- Most of biochemistry
19001-1905: Re-discovery of Mendel’s laws and the birth of genetics

- Concept of genes as independent particles of information
- No ‘blending of traits’
 - Almost simultaneously rediscovered by de Vries, Correns and Von Tschermak
- Bateson coins the word ‘genetics’ from the Greek ‘genno’ – to give birth
- Bateson became known as ‘Mendel’s bulldog’ and popularised Mendel’s work

Hugo de Vries
Carl Correns
Erich Tschermak
William Bateson
1902 – Are chromosomes involved in heritability?

• Walter Sutton using grasshopper gametes
• Theodore Boveri using sea urchins

“...the association of paternal and maternal chromosomes in pairs and their subsequent separation during [cell] division ...may constitute the physical basis of the Mendelian law of heredity.”

- Theodore Boveri
1910s - More on the composition of DNA

- Determined relative composition of sugars, phosphate and sugars by hydrolysis of nucleic acids
- Enabled the discovery of DNA and RNA bases
- Unfortunately, this method can destroy bases and biases results
- Made it impossible to compare composition between species
- Phoebus Levene proposed the tetranucleotide hypothesis
 - DNA consisted of repeating units of thymine, guanine adenine and cytosine
 - E.g. GACT GACT GACT
 - Convinced many that DNA could not be a carrier of hereditary information
 - Led to the assumption that DNA was just a structural component of cells
1910-30s - Chromosome theory of heredity

- Chromosome as a unit of heritability confirmed by Thomas Morgan by 1915

- Alfred Sturtevant creates the first genetic linkage map

- Genetic recombination shown to be caused by physical recombination of chromosomes by McClintock & Creighton
1928 - Inheritance of virulence

- Established that non-virulent pneumococci bacteria could be converted be made virulent by exposure to lysed virulent bacteria

Frederick Griffiths

“Could do more with a kerosene tin and a primus stove than most men could do with a palace”

Hedley Wright

What was the ‘transforming principle’ which underlay this observation?
1944 – What is life?

• An ‘aperiodic solid crystal’ could code for an organism
• “A well-ordered association of atoms endowed with sufficient resistivity to keep its order permanently”
• Also placed living systems into a thermodynamic framework

• Served as inspiration for Watson & Crick
1944 – Establishing DNA as the transforming principle

- Separated cellular components and repeated Griffiths experiments
- Enabled by new ‘ultra-centrifugation’ technology
- Extended Griffiths work to prove that nucleic acids were the ‘transforming principle’
- Also demonstrated that DNA, not RNA was the genetic material
- Incredibly small amounts – 1 in 600 million were sufficient to induce transformation

[Oswald Avery]

[Diagram showing the process of transformation with lipid, polysaccharide, protein, and nucleic acids]

[Source: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2135445]
1945 – 1952 Critique

- Alfred Mirksy was a pioneer of molecular biology
- Isolated chromatin from a wide variety of cells
- He was concerned that Avery’s results could be the result of protein contamination
- Convinced the Nobel panel not to award a prize to Avery
- Later, Mirsky would actually demonstrate the ‘constancy’ of DNA throughout somatic cells
1950 – Base composition between organisms

- Erwin Chargaff hit back at Mirsky and developed the base complementarity hypothesis with Masson Gulland
- Determined that the molar ratio of A:T and G:C were always very close to 1
- Relative proportions of bases varied between species but was the same within species
- Refuted Levene’s 30 year-old tetranucleotide hypothesis
1952- Confirmation of Avery’s experiment

- Grow bacteriophage using radioactive substrates
 - Protein with radioactive sulphur
 - DNA with radioactive phosphorous

- Bacteriophages infected bacteria by injecting DNA, not protein

- Indicated that protein could not be the heritable genetic material

- Yet there was still the possibility of small amounts of protein contamination which led some to have doubts about the role of DNA

http://en.wikipedia.org/wiki/Hershey%E2%80%93Chase_experiment
1952 – X-ray diffraction patterns of DNA

• Wilkins, Franklin and Gosling
• Much improved X-ray diffraction patterns of the B-form of DNA
• Wilkins developed a method to obtain improved diffraction patterns using sodium thymonucleate to draw out long thin strands of DNA

Photo Number 51

1953 – Watson & Crick obtain a structure for DNA

- B-model or wet-form of DNA
- Relied upon data from Maurice Wilkins and Rosalind Franklin via Maz Perutz
- "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."
- Broad acceptance of the structure and role of DNA did not occur until around 1960
1958 – Evidence for the mechanism of DNA replication

- Meselson & Stahl
- Supported Watson & Crick’s hypothesis of semi-conservative DNA replication

Three postulated methods of DNA Replication

- Semi-Conservative
- Conservative*
- Dispersive*

* not found to be biologically significant

1958 – Evidence for the semi-conservative mechanism of DNA replication
Other developments in molecular biology

• 1954 - George Gamow proposed a 3-letter code
• 1955 – Polynucleotide phosphorylase discovered
 – Enabled synthesis of homogeneous nucleotide polymers
• 1957 – Crick lays out ‘central dogma’
• 1957-1963
 – RNA structure
 – Work on DNA-RNA hybridization
• 1960s
 – Crystal structures of tRNAs
 – Role in protein synthesis
 – Role of ribosomes
• Set the stage for...
1961 - Deciphering the genetic code

• How did DNA code for proteins?

• Nirenberg and Matthaei

• Used polynucleotide phosphorylase to construct a poly-uracil polymer

• Added to a cell-free system containing ribosomes, nucleotides, amino acids, energy

• This produced an amino acid chain of phenylalanine

• Completed in mid 1960s by Har Gobind Khohrana
Other key figures

• Max Delbruck
 – Physicist who helped found molecular biology

• Salvador Luria
 – James Watson’s PhD supervisor
 – Demonstrated with Delbruck that inheritance in bacteria was Darwinian and not Lamarkian

• Linus Pauling
 – Proposed triple helix model for DNA

• Lawrence Bragg
 – Hosted Watson & Crick
 – Rival of Pauling’s

• Jerry Donohue, William Astbury, Raymond Gosling, John Randall, Fred Neufield, Herbert Wilson...
Oswald Avery

- Avery died in 1955
- It is unknown whether he learned of Watson & Crick’s structure of DNA
- However his 1944 paper is cited around 40 times a year and has cited over 2000 times
Further reading

• Eighth day of creation – Horace Freeland Judson

• Life’s Greatest Secret – Matthew Cobb

First generation sequencing
The development of sequencing methodologies

• What do we mean by ‘sequencing’?

• Determining the order and identity of chemical units in a polymer chain
 – Amino acids in the case of proteins
 – Nucleotides in the case of RNA and DNA

• Why do we do it?
 – 3D structure and function is dependent on sequence
1949 – Amino acids

- Sequenced bovine insulin
- Developed a method to label N-terminal amino acids
 - Enabled him to count four polypeptide chains
- Used hydrolysis and chromatography to identify fragments

Fred Sanger
1965 - RNA sequencing and structure

- Sequenced transfer RNA of alanine
- Used 2 ribonuclease enzymes to cleave the enzyme at specific motifs
- Chromatography
- 1968 Nobel prize

http://www.sciencemag.org/content/147/3664/1462
1975 - The dawn DNA sequencing

- Between 1975-1977 three methods of DNA sequencing were published
 - Fred Sanger’s Plus/Minus method
 - Maxam-Gilbert
 - Fred Sanger’s chain termination method
Maxam-Gilbert sequencing is performed by chain breakage at specific nucleotides.
A new method for sequencing DNA

(DNA chemistry/dimethyl sulfate cleavage/hydrazine/piperidine)

ALLAN M. MAXAM AND WALTER GILBERT

Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138

Contributed by Walter Gilbert, December 9, 1976

ABSTRACT DNA can be sequenced by a chemical procedure that breaks a terminally labeled DNA molecule partially at each repetition of a base. The lengths of the labeled fragments then identify the positions of that base. We describe reactions that cleave DNA preferentially at guanines, at adenines, at cytosines and thymines equally, and at cytosines alone. When the products of these four reactions are resolved by size, by electrophoresis on a polyacrylamide gel, the DNA sequence can be read from the pattern of radioactive bands. The technique will permit sequencing of at least 100 bases from the point of labeling.

We have developed a new technique for sequencing DNA molecules. The procedure determines the nucleotide sequence of a terminally labeled DNA molecule by breaking it at adenine, guanine, cytosine, or thymine with chemical agents. Partial cleavage at each base produces a nested set of radioactive

THE SPECIFIC CHEMISTRY

A Guanine/Adenine Cleavage (2). Dimethyl sulfate methylates the guanines in DNA at the N7 position and the adenines at the N3 (3). The glycosidic bond of a methylated purine is unstable (3, 4) and breaks easily on heating at neutral pH, leaving the sugar free. Treatment with 0.1 M alkali at 90° then will cleave the sugar from the neighboring phosphate groups. When the resulting end-labeled fragments are resolved on a polyacrylamide gel, the autoradiograph contains a pattern of dark and light bands. The dark bands arise from breakage at guanines, which methylate 5-fold faster than adenines (3).

This strong guanine/weak adenine pattern contains almost half the information necessary for sequencing; however, ambiguities can arise in the interpretation of this pattern because the intensity of isolated bands is not easy to assess. To determine
Maxam-Gilbert Sequencing

Sequencing gels are read from **bottom to top** (5′ to 3′).
DNA sequencing with chain-terminating inhibitors

(DNA polymerase/nucleotide sequences/bacteriophage φX174)

F. SANGER, S. NICKLEN, AND A. R. COULSON

Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, England

Contributed by F. Sanger, October 3, 1977

ABSTRACT A new method for determining nucleotide sequences in DNA is described. It is similar to the “plus and minus” method [Sanger, F. & Coulson, A. R. (1975) J. Mol. Biol. 94, 441–448] but makes use of the 2',3'-dideoxy and arabinonucleoside analogues of the normal deoxynucleoside triphosphates, which act as specific chain-terminating inhibitors of DNA polymerase. The technique has been applied to the DNA of bacteriophage φX174 and is more rapid and more accurate than either the plus or the minus method.

The “plus and minus” method (1) is a relatively rapid and simple technique that has made possible the determination of the sequence of the genome of bacteriophage φX174 (2). It depends on the use of DNA polymerase to transcribe specific regions of the DNA under controlled conditions. Although the method is considerably more rapid and simple than other

METHODS
Sanger DNA Sequencing

- Uses two classes of de-oxy nucleotide tri-phosphate
 - Regular de-oxy NTP nucleotides (i.e dATP, dGTP, dCTP and dTTP)
 - di-deoxy NTP molecules which are radio-labelled and lack a 3’ hydroxyl group
- The lack of 3’ hydroxyl bond prevents extension of growing strand
- With addition of enzyme (DNA polymerase), the primer is extended until a ddNTP is encountered.
- The chain will end with the incorporation of the ddNTP
- With the proper dNTP:ddNTP ratio (about 100:1), the chain will terminate throughout the length of the template.
- All terminated chains will end in the ddNTP added to that reaction
Sanger sequencing

AGCTGCCCCG

Possible fragment lengths

- **A**
 - ddATP + four dNTPs
 - ddA
 - dAdGdCdTdGdCdCdCdG
 - 1 or 9bp

- **C**
 - ddCTP + four dNTPs
 - dAdGddC
 - dAdGdCdTdGdCdCdC
 - dAdGdCdTdGdCdCddC
 - 3, 6, 7 or 8bp

- **G**
 - ddGTP + four dNTPs
 - dAddG
 - dAdGdCdTdGdCdG
 - dAdGdCdTdGdCdCddG
 - 2, 5, or 9bp

- **T**
 - ddTTP + four dNTPs
 - dAdGdCddT
 - dAdGdCdTdGdCdCdCdG
 - 4 or 9bp

Possible fragment lengths:

- 1 or 9bp
- 3, 6, 7 or 8bp
- 2, 5, or 9bp
- 4 or 9bp
Sanger di-deoxy method

5’ AGCTGCCCG 3’

Longer fragments

Shortest fragments

<table>
<thead>
<tr>
<th>ddG</th>
<th>ddA</th>
<th>ddT</th>
<th>ddC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5’ AGCTGCCCG 3’
1985: Automating Sanger Sequencing

• Disadvantages of manual Sanger sequencing
 – Labour intensive
 – Used radioactive labels
 – Interpretation/analysis was subjective
• Difficult to scale up
• Leroy Hood, Michael Hunkapiller developed an automated method utilising:
 – Fluorescent labels instead of radioactivity
 – Utilise computerised algorithms to analyse data
 – Robotics
• Development of PCR by Kary Mullis (NGS would be impossible without it)
Dye Terminator Sequencing

• A distinct dye or “color” is used for each of the four ddNTP.

• Since the terminating nucleotides can be distinguished by color, all four reactions can be performed in a single tube.

The fragments are distinguished by size and “color.”
Dye Terminator Sequencing

The DNA ladder is resolved in one gel lane or in a capillary
Dye Terminator Sequencing

• The DNA ladder is read on an electropherogram.
Automated Sequencing

- Dye primer or dye terminator sequencing on capillary instruments.
- Sequence analysis software provides analyzed sequence in text and electropherogram form.
- Peak patterns reflect mutations or sequence changes.

[Diagram showing peak patterns for T/T, T/A, and A/A]
Sanger Sequencing
Useful videos

• http://www.youtube.com/watch?v=91294ZAG2hg&feature=related

• http://www.youtube.com/watch?v=bEFLBf5WEtc&feature=fvwrel
Features of Sanger Sequencing

- 96-384 sequences per run
- 500bp-1kb read lengths
- $100 per megabase
- Accuracy decreases with length (99.999% at 500bp down to 99% at 900bp)
- Still the most accurate technique for sequencing
Limitations of Sanger Sequencing

• Cloning/Sub-cloning
 – DNA must be compatible with biological machinery of host cells and can introduce bias
 – Labour and/or machines to prepare clones requires significant capital

• Difficult to distinguish allele frequency
 – Usually 10% is the limit of detection for clinical variants

• Cost
 – $10,000,000 to sequence a 1Gbase genome to 10x coverage
Human genome project
Human Genome Project

- One of the largest scientific endeavors
 - Target accuracy 1:10,000 bases
 - Started in 1990 by DoE and NIH
 - $3Billion and 15 years
 - Goal was to identify 25K genes and 3 billion bases
- Used the Sanger sequencing method
- Draft assembly done in 2000, complete genome by 2003, last chromosome published in 2006
- Still being improved
Human Genome Project

How it was Accomplished

- Public Project
 - Hierarchical shotgun approach
 - Large segments of DNA were cloned via BACs and located along the chromosome
 - These BACs were shotgun sequenced
- Celera
 - Pure shotgun sequencing
 - Used public data (released daily) to help with assembly
Method 1: Hierarchical Sequencing

Using Bacterial artificial chromosomes (BACs) to aid assembly
Using optical mapping approaches to aid assembly

Using genetic maps to improve assembly

Chromonomer is a program designed to integrate a genome assembly with a genetic map. Chromonomer tries very hard to identify and remove markers that are out of order in the genetic map, when considered against their local assembly order; and to identify scaffolds that have been incorrectly assembled according to the genetic map, and split those scaffolds.

Download Chromonomer version 1.06

Recent Changes [updated Oct 13, 2016]

Chromonomer Manual

http://catchenlab.life.illinois.edu/chromonomer/
Using hybridisation probes to aid assembly
Method 2: Celera Shotgun Sequencing

- Used paired-end strategy with variable insert size: 2, 10, and 50kbp
Outcome of the HGP

- Spurred the sequencing of other organisms
 - 36 “complete” eukaryotes (~250 in various stages)
 - 1704 “complete” microbial genomes
 - 2685 “complete” viral genomes
- Enabled a multitude of related projects:
 - Encode, modEncode
 - HapMap, dbGAP, dbSNP, 1000 Genomes
 - Genome-Wide Association Studies, WTCCC
 - Medical testing, GeneTests, 23AndMe, personal genomes
 - Cancer sequencing, COSMIC, TCGA, ICGC
- Provided a context to organize diverse datasets
HGP Data Access

Results in GenBank, UCSC, Ensembl & others
Achievements Since the HGP

Economic Impact of the Project

- Battelle Technology Partnership Practice released a study in May 2011 that quantifies the economic impact of the HGP was $796 billion!

- Genomics supports:
 - >51,000 jobs
 - Indirectly, 310,000 jobs
 - Adds at least $67 billion to the US economy

http://www.genome.gov/27544383
2004 onwards:
Beyond 1 species, 1 genome

• Cost of producing a single genome could vary from $100,000s to $10s of millions using capillary sequencers

• Labour intensive methodology

• New methods were required to lower the overall cost per genome
Second generation short read technologies
Common features

• Generation and sequencing of monoclonal populations of DNA molecules
• Rely on polymerases to re-synthesise complementary strands of DNA
• Typically rely on either fluorescently-labelled nucleotides or monitoring of hydrogen release upon incorporation
Sequencing – 1990s-2007

SEQUENCING

- 74x Capillary Sequencers
- 10 FTEs
- 15-40 runs per day
- 1-2Mb per instrument per day
- 120Mb total capacity per day

PRODUCTION

- Rooms of equipment
- Subcloning > picking > prepping
- 35 FTEs
- 3-4 weeks
Sequencing today
Sequencing today?
Key advantages over Sanger Sequencing

• Hugely reduced labour requirements
 – No need to perform cloning
• Reduced cost per sequence
• Reduced time to result
• Decentralisation
• Enabling new techniques (e.g. gene expression profiling)

![Cost per Raw Megabase of DNA Sequence](image)
Platform comparison

<table>
<thead>
<tr>
<th>Platform</th>
<th>Read length (bp)</th>
<th>Throughput (reads per hour)</th>
<th>Run time (hr)</th>
<th>Cost per Gb (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illumina HiSeq 1000/2000</td>
<td>100</td>
<td>950000</td>
<td>14.6</td>
<td>8.0</td>
</tr>
<tr>
<td>Illumina HiSeq X Ten</td>
<td>150</td>
<td>300000</td>
<td>7.1</td>
<td>9.5</td>
</tr>
<tr>
<td>Illumina HiSeq X Ten</td>
<td>300</td>
<td>600000</td>
<td>3.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Illumina HiSeq X Ten</td>
<td>500</td>
<td>1200000</td>
<td>1.7</td>
<td>9.5</td>
</tr>
<tr>
<td>Illumina HiSeq X Ten</td>
<td>800</td>
<td>2400000</td>
<td>0.85</td>
<td>9.5</td>
</tr>
<tr>
<td>Pacific Biosciences RS II</td>
<td>100</td>
<td>50000</td>
<td>9.6</td>
<td>3.0</td>
</tr>
<tr>
<td>Pacific Biosciences RS II</td>
<td>150</td>
<td>100000</td>
<td>5.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Pacific Biosciences RS II</td>
<td>300</td>
<td>200000</td>
<td>2.6</td>
<td>3.0</td>
</tr>
<tr>
<td>Pacific Biosciences RS II</td>
<td>500</td>
<td>400000</td>
<td>1.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Pacific Biosciences RS II</td>
<td>800</td>
<td>800000</td>
<td>0.65</td>
<td>3.0</td>
</tr>
</tbody>
</table>

For more detailed information, please refer to the original source:

http://www.nature.com/nrg/journal/v17/n6/fig_tab/nrg.2016.49_T1.html
Illumina Sequencing By Synthesis

Illumina HiSeq

Illumina NextSeq

Illumina MiSeq
The workhorse of modern genomics
Approximate Market Share 2015

- **Illumina**: 80%
- **Thermo/Life Tech**: 15%
- **PacBio**: 2%
- **Other**: 3%
Fun fact

• Clive Brown
• Formerly director of Computational Biology at Solexa (Illumina)
• Chief Scientific Officer at Oxford Nanopore
Step 1: Sample Preparation

1. **Active Chromatin**
 - mRNA
 - 0.5 ug total RNA

2. **Genomic DNA**
 - min 1 ng

3. **Small RNA**
 - 1 ug total RNA

4. **ChIP-Seq**
 - 10 ng

5. **Other Apps**

Prepare genomic DNA sample. Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.
Step 2: Clonal Single Molecule Arrays

~1000 molecules per ~1 um cluster
~2 billion clusters per flowcell

1 cluster = 1 sequence

Random array of clusters
Step 3: Sequencing By Synthesis (SBS)

Cycle 1:
- Add sequencing reagents
- First base incorporated
- Remove unincorporated bases
- Detect signal
- Debloc k and defluor

Cycle 2: Add sequencing reagents and repeat
Under the hood:
Illumina Sequencing: How it looks

2 BILLION CLUSTERS PER FLOW CELL

20 MICRONS

100 MICRONS
Base calling from raw data

The identity of each base of a cluster is read off from sequential images.
Illumina platforms

Illumina HiSeq
- 500Gbase/flowcell
- 8 human genomes
- 6 day run time
- High output or rapid run mode
- Read lengths up to 250bp
- Requires large numbers of samples (or large genomes) to obtain lowest cost
- 4 colour chemistry
- £650,000 incl 3 year servicing

Illumina NextSeq 500
- 90 - 120Gbase/flowcell
- 1 human genome
- 2 day run time
- High output or rapid run mode
- Read lengths up to 150bp
- 2-colour chemistry
- £250,000 incl 3 year servicing

Illumina MiSeq
- Up to 15Gbase/flowcell
- 2 day run time
- Read lengths up to 300bp
- 4 colour chemistry
- £90,000 incl 3 year servicing
Types of Illumina reads

• Single-end
• Paired-end
• Barcode/index
• Mate-pair
• Long synthetic reads
• 10X Genomics Linked Reads
Single-end reads

This would be a 16bp single-end read from a 500bp fragment
• Most common Illumina read lengths are 50, 75bp, 100, 125 or 150bp
• Usually cheapest but may not always be available for small projects
• Useful for counting applications (e.g. gene expression profiling in bacteria)
Paired-end reads

This would be a 16bp paired-end read from a 500bp fragment
• Most common Illumina read lengths are 50, 75bp, 100, 125 or 150bp
• Some facilities will mostly run paired-end reads
• Often a requirement for de-novo assembly or isoform quantification
• For some applications its desirable to have read 1 and read 2 overlap to increase accuracy (e.g. 16S amplicon sequencing)
 • This is achieved by careful design of the amplicon or size selection to ensure it is shorter than read 1 + read 2
Paired-end reads are important

Known Distance

Read 1 Read 2

Repetitive DNA

Unique DNA

Paired read maps uniquely

Single read maps to multiple positions
Barcodes/index reads

This would be a 16bp paired-end read with an 8bp index from a 500bp fragment
Achieved by adding one or more priming sites for the polymerase
Enables multiplexing (mixing) of samples on the same physical space on the flowcell
Virtually all libraries are indexed today even if they are
Barcodes can also be introduced in-line as part of read 1 or read 2 (e.g. some RAD libraries, amplicons)
Mate pair libraries

- Maximum DNA fragment size for Illumina is ~800bp

- Purify fragments containing biotin moiety using Streptavidin beads
- Create a standard Illumina library and sequence using paired-end reads
- Physical fragment size is 500bp
- Genomic distance between read 1 and read 2 is 19.5kb
- Valuable for de-novo assembly

\[\text{Circularise} \quad \rightarrow \quad \text{Fragment} \quad \rightarrow \quad \text{= Biotin moiety} \]
Long synthetic read libraries

- Generate 2-10kb reads by partitioning DNA
- Dilute bulk DNA into wells
- ~3000 molecules/well
- Create individual barcoded libraries for the molecules in each well
- Assemble reads from each well separately
- Reduces complexity and enables assembly of long synthetic reads from standard paired-end reads
- Useful for denovo assembly, haplotyping and phasing

10X Genomics

- A third-party system which provides additional capabilities
 - ‘Linked-reads’ to enable the formation of haplotypes and improve genome assemblies
 - Single-cell gene expression profiling
- £150k purchase price and approx £500 per library

Illumina technological developments

- **NextSeq**
 - Utilises 2-colour instead of 4-colour chemistry to reduce sequencing time
- **HiSeq 2500, NextSeq and MiSeq**
 - Clusters formed randomly on the surface of the flowcell
- **HiSeq 3000, 4000, X series**
 - Clusters only form within nanowells
 - Patterned flowcells
2-colour chemistry

• Instead of using 4 different dyes for each nucleotide, use 2
• Label T as green and C as red
• Label A as green and red
• Label G with no dye
• Rely on cluster position to call G bases
2-colour chemistry

http://core-genomics.blogspot.cz/2014/01/nextseq-500s-new-chemistry-described.html
Advantages/disadvantages

• Advantages
 – Speed
 – Only two pictures need to be taken each cycle instead of four

• Disadvantages
 – Higher likelihood of errors
 – Difficult to calibrate guanine quality scores
 – With fragments shorter than read length, tendency is to call G with high quality scores
 – Note recommended for low-diversity samples (e.g. 16S amplicons)
Patterned flowcells

Randomly clustered flowcell
(2500)

Patterned flowcell
(3000/4000)
Comparison
Advantages

• Removes the need to detect cluster location during first 4 cycles of sequencing

• Lower sensitivity to over-clustering
Advantages

• Allows for exclusion amplification to reduce the number of polyclonal clusters
• Utilises an electric field to transport labelled dNTPs to wells faster than amplicons can diffuse between wells
• 1 sequence per well
• Whichever sequence starts replicating first within a well will rapidly out-compete other sequences
• Removes upper poisson-limit on random flowcell clustering (~37%)

Disadvantages

• Possibility to obtain large number of duplicated sequences across wells
 – Caused by seeding of adjacent wells
 – Can be caused by under-clustering
 – Still important to load correct concentrations

• Limits on DNA fragment length
Potential issues with Illumina sequencing

- Specific motifs which are difficult to sequence
 - GGC motif
 - Inverted repeats

- Now mostly resolved
 - Low diversity sequences
 - 16S/amplicon sequences
 - Custom adaptors with barcodes at 5’ end
 - Now a much reduced problem thanks to software updates
 - GC/AT bias
 - GC clusters are smaller than AT
 - GC bias during amplification is still a problem

Why do quality scores drop towards the end of a read?
Schematic representation of main Illumina noise factors.
(a–d) A DNA cluster comprises identical DNA templates (colored boxes) that are attached to the flow cell. Nascent strands (black boxes) and DNA polymerase (black ovals) are depicted.
(a) In the ideal situation, after several cycles the signal (green arrows) is strong, coherent and corresponds to the interrogated position.
(b) Phasing noise introduces lagging (blue arrows) and leading (red arrow) nascent strands, which transmit a mixture of signals.
(c) Fading is attributed to loss of material that reduces the signal intensity (c).
(d) Changes in the fluorophore cross-talk cause misinterpretation of the received signal (blue arrows; d). For simplicity, the noise factors are presented separately from each other.
Limits to Illumina technology

• Limitations:
 – Reagent degradation
 – Dephasing
 • Leads to higher error rates
 • A 1% loss of signal or polymerase error every cycle leads to only 35% correct signal after 100 cycles
 – Sequencing time is always governed by the cyclic nature of the instrument (one base at a time)
 • Ideally dispense with incorporate, image, wash cycles
 – Size of fragments which can be clustered on the flowcell
 • Read lengths beyond the size of the DNA fragment are useless
 • Inefficient clustering >800bp
 • Places limits on denovo assembly
Features of Illumina Sequencing

• 1 – 300 million sequences per run/lane (depending on platform and configuration)
• 36-300bp read lengths
• $0.01 - $0.1 per megabase
• Accuracy decreases along read length but ~0.1-0.3%
Other second-generation technologies

• 454
• Life Tech/Ion Torrent
• BGI-Seq 500
• Complete Genomics (primarily a service for human genomics)
• Qiagen Genereader (gene panels)
Third generation sequencers

Of course size matters.

Does anyone want a SMALL glass of wine?

WinebanceUK
someecards
user card
Third generation sequencers

• Single-molecule DNA sequencing

• Some rely on detecting the incorporation of complementary bases to single-stranded DNA (PacBio)

• Some rely on changes in electrical current as DNA passes through a sensor (Oxford Nanopore)
Pacific Biosciences RS II and Sequel
Key features

• 10-15x more expensive than Illumina per base
• Sequences single molecules of DNA
• Read lengths 500-90,000bp
• Does not require amplification
• Can directly detect base modifications (DNA methylation)
• For many applications it requires high quality DNA and high amounts of DNA (>20ug)
 – Where amplification is involved prior to sequencing this requirement is relaxed somewhat
Reducing noise in the Zero Mode Waveguide (ZMW)

• Sequencing takes place in the ZMW
• Sequencing can only take place if one and only one DNA/polymerase complex is present in each ZMW
• Each ZMW is just 70nm wide
• Wavelength of laser light used to illuminate ZMW ~500nm
• Therefore light incident on ZMW will act as an evanescent wave and only penetrate the first ~30nm
• This reduces the amount of noise from fluorescence of non-incorporated fluorophores
Zero mode waveguide

Free nucleotides

Immobilised DNA polymerase

Laser and detector

Immobilised DNA polymerase
Observing a single polymerase
Library preparation steps

1. Fragment DNA
2. Repair Ends
3. Ligate Adapters
4. Purify DNA
5. Polymerase + Primer
6. Circular consensus sequencing

Sequencing
PacBio nomenclature

- **Polymerase read length**
 - Lifetime of the polymerase (how many kilobases it sequences)
 - Directly impacts both quality and length of reads

- **Read of insert length**
 - Length of the DNA fragment between adaptor sequences
 - Ultimate limit on read lengths
 - Short fragments will tend to load preferentially so size selection is important to remove these

- **Subread**
 - The data from a single pass of a polymerase across the DNA fragment between the adaptors

- **Circular consensus**
 - The consensus of multiple subreads from a single piece of DNA

- **P0, P1 and P2**
 - Occupancy of Zero-Mode-Waveguides – we want to maximise P1 (one DNA/polymerase complex)
Circular consensus sequencing

Standard Sequencing for Continuous Long Reads (CLR)

Large Insert Sizes

Generated one pass on each molecule sequenced

Circular Consensus Sequencing (CCS)

Small Insert Sizes

Generates multiple passes on each molecule sequenced
Read lengths

P6-C4 Chemistry

Data per SMRT® Cell: 500 Mb – 1 Gb

Half of data in reads: > 14 kb

Top 5% of reads: > 24 kb

Maximum read length: > 40 kb

Based on data from a 20 kb size-selected E. coli library using a 4-hour movie. Each SMRT Cell yields ~50,000 reads.
Note on read length and accuracy

• Longer reads are more error prone because they are read fewer times
• Error rate of a single read has a phred quality score of approximately 9 (~12% error rate)
• Therefore to obtain a phred quality above 30 we need to have at least 2-3 passes of the molecule
• With a median polymerase read length of 12kb, this is achievable with for 3kb fragments

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152597/
Note on read length and accuracy

• In summary:
 – Shorter reads will tend to be higher quality
 – Longer reads will tend to be lower quality

• Depending on the application this may or may not be a problem
 – Long, error prone reads are good for scaffolding genome assemblies
 – May not be suitable for long amplicons
Clean and high quality DNA is CRUCIAL

- Optimising a DNA extraction to achieve obtain clean, high quality DNA is the most time consuming step for non-model organisms

- **Avoid:**
 - **DNA damage:** alkylation, oxydation, UV-crosslinks, AP-sites, intercalating agents
 - **DNA binders:** polyphenols, secondary metabolites, pigments, polysaccharides
 - **Polymerase inhibitors:** salts (EDTA), phenol, alcohols
 - **DNA Fragmentation:** If your DNA is fragmented during extraction then you will not obtain long reads
Example: Effect of contaminants

Sample with contaminants

Same sample without contamination

This is *native* DNA sequencing as opposed to *PCR-cleaned* sequencing
You need a lot of DNA

Template = 0.475 ug

Template = 0.46 ug
Fragment DNA

Shearing: hydro-shear, g-tube, needle, sonication etc.
Types of libraries

• Non-size selected
 – Sequencer will tend to load shorter fragments so best avoided unless material is of a uniform length

• 10, 20, 30kb libraries
 – Increasingly difficult to size select sufficient material beyond that
 – Molar concentration of long DNA fragments tends to be much lower than shorter fragments

• IsoSeq libraries
 – Based on clontech polyA libraries

• Barcoding/multiplexing is possible
PacBio applications

- Denovo assembly
- Hybrid assembly
- Complex regions and structural variation
- PCR Amplicon
- Iso-seq
- Targeted capture of regions
- Haplotype phasing
- DNA modifications
Genome assembly methods

Sequencing of Pseudomonas aeruginosa (6.3Mb)
1 contig
How much data do we need from a 20kb library?

Contigs are ordered from largest (contig #1) to smallest.
Fungal de-novo assemblies

- Magnaporthe oryzae
- ~40 Mbase genome

http://www.nature.com/nrmicro/journal/v7/n3/abs/nrmicro2032.html
Structural variation

- Variant Type
 - SNPs
 - Small Indels
 - Phased SNVs
 - STRs & VNTRs
 - Mobile Elements
 - Large Insertions, Deletions, CNV
 - Complex Variants
 - Phased SV's
 - Very Large SV's

- One PacBio Read Spans Most Variants
 - Phasing SNPs
 - Indels
 - Phased Alleles
 - Repeat Expansions
 - L1, Alu, SVA
 - Copy Number Variation
 - Inversions
 - Phased Haplotypes
 - Large Structural Rearrangement

- Assembled PacBio Reads Span Euchromatic Genome Variation

- Discovery or validation of many types of structural variation

- Size of Variant:
 - 1bp
 - 10bp
 - 100bp
 - 1kb
 - 10kb
 - 100kb
 - 1Mb
 - 10Mb
 - 100Mb
Sequencing of complex regions
Major histocompatibility complex

Chromosome 6

HLA Gene Complex

HLA Class II Region HLA Class III Region HLA Class I Region

CCCCGTCAACCCGCACAGAACCCCGCCGGTGGCTCGGCCCGCCCTCCGCACACACCT
CCCCGCCAACCCGGAAACCCGCAAGTAAACCCCAAGCATGGCCCTGAGCCTTCCCGGC
CCCCCCTCCGGCCGCACGCCCCCTCGCCACCCCCGCCTCCCCCTCCCCGTCTAGGCCCCCTCC
CGCCGCCCCGCCCCCGGGGAAAGGCAAGCGCCAGCTGAGCGGGGGCCGATGCACTG
AGGCCGCCCGCGCCCGCCCGCCCGCCCGCCCGCCCTGCGGAGCCCCCGAGCCGCTGTCCCC
GCGCCGGCCGCCGCCCCGCCCCCCCCGCCCCCTCCGCGCAAGCGCGCCGACGGGGC
TCCGGCGGGGGGGAAAGGGGGGGCGGGGCGGGCGGGCGGGGCGGGGCTCGG
TTCCGCGCGAGCGGCCGGCCGCCCCGCGGGCGGGCGGGCGGGGATGGAAGGGCCGGG
CAAGCGCCGTGGTCGTCGCGTCGGCATCCCCGACCTGCAAGGACTGAGCCCG
Isoform sequencing
Full length transcript sequencing (IsoSeq)

- Requires polyA RNA
- Uses SMRTer approach
- Ability to sequence full length transcripts with no need for assembly
Iso-seq example
Amplicon sequencing

Concept

RET gene: phasing of two mutations

BCR-ABL: Finding mutations in a transcript

Amplicon Consensus Summary

<table>
<thead>
<tr>
<th>Sequence Cluster</th>
<th>Length (Bp)</th>
<th>Estimated Accuracy</th>
<th>Subreads Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCR-ABL</td>
<td>1,579</td>
<td>99.994%</td>
<td>500</td>
</tr>
</tbody>
</table>
Epigenetic modifications
Types of modifications

Eukaryotes:

- 6-mA
- 5-mC
- 5-hmC
- 5-IC
- 5-caC
- U
- Base J

Prokaryotes:

- 6-mA
- 4-mC
- 5-mC
- PT
<table>
<thead>
<tr>
<th>Cost of instrument (with service contract)</th>
<th>RSII</th>
<th>Sequel</th>
</tr>
</thead>
<tbody>
<tr>
<td>$800k</td>
<td></td>
<td>$450k</td>
</tr>
<tr>
<td>Cost per library</td>
<td>$300-$400</td>
<td>$400-500</td>
</tr>
<tr>
<td>Cost per SMRT cell</td>
<td>$175</td>
<td>$600</td>
</tr>
<tr>
<td>Median polymerase read length</td>
<td>12-15kb</td>
<td>7-8kb</td>
</tr>
<tr>
<td>Maximal polymerase read length</td>
<td>90-100kb</td>
<td>30-40kb</td>
</tr>
<tr>
<td>Number of reads/cell</td>
<td>50,000-100,000</td>
<td>300,000-600,000</td>
</tr>
<tr>
<td>Data volume</td>
<td>750Mbase-2Gbase</td>
<td>3-6Gbase</td>
</tr>
<tr>
<td>Cost per megabase (inc library)</td>
<td>$0.67</td>
<td>$0.37</td>
</tr>
</tbody>
</table>

Consumable costs only
Initial chemistry issues with Sequel

Total Reads

![Graph 1](chart1.png)

avg. Read Length 15474 bp

| P1 | Yield | 35% | 820 Mb |

![Graph 2](chart2.png)

avg. Read Length 10362 bp

| P1 | Yield | 36% | 3716 Mb |
Initial chemistry issues with Sequel

- Limited to 20kb inserts
- Limited to 6-9kb polymerase reads
- Output limited to 2-3Gbases/cell
Initial chemistry issues with Sequel

New Chemistry and Software for Sequel System Improve Read Length, Lower Project Costs

Monday, January 9, 2017

We are pleased to announce the launch of a new version of our chemistry, SMRT Cells, and software for the Sequel System. The V4 software, V2 chemistry, and SMRT Cells tuned for the new sequencing chemistry kits will be available on January 23rd.

These new releases allow the system to achieve mean read lengths of 10-18 kb, with half of the data in reads >20 kb, and throughput of 5-8 Gb. This enhancement improves results for important applications such as structural variant detection, targeted sequencing, metagenomics, minor variant detection, and isoform sequencing. The software release includes updates to the base calling algorithm that increase accuracy, as well as new features designed for clinical research applications. In addition to the performance improvements, the Sequel System is now capable of loading 80 kb sequencing libraries.

Improvements

• Loading DNA fragments up to 80kb
• PEG buffer to reduce loading bias for small fragments
 – May enable running of non size-selected IsoSeq libraries
• Median read lengths >20kb
• Output of 5-8Gbase/cell
Pacific Biosciences

• Advantages
 – Much longer reads lengths possible than second generation sequencers
 – Cost per SMRTcell is lower ($250 per SMRTcell plus $400 per library prep)
 – Same molecule can be sequenced repeatedly
 – Epigenetic modifications can be detected
 – Long reads enable haplotype resolution

• Disadvantages
 – Library prep still required (micrograms needed)
 – Still enzyme based
 – Often need multiple cells to optimise loading so you may need to run a minimum of 2-3 cells
 – RSII: Only 50,000 reads/cell – approx 750Mb yield (can yield up to 2Gb for short fragments)
 – Sequel: 300,000-600,000/cell – approx. 3-6Gbases
 – High (12%) error rate per read (but consensus can reduce <0.01% although indels may require Illumina data to polish out)
 – $800k machine
Bioinformatics Implications

- Relatively low data and high per base cost limits widespread use
- Can obtain useful 20-40kb fragments (P4-C6 chemistry)
- Best used in conjunction with error correction algorithms utilising shorter PacBio reads (or Illumina data)—e.g. Wheat D genome
- Excellent to assist scaffolding of genomes
- Able to generate complete bacterial genomes
- Has been used to generate higher eukaryote genomes (e.g. Drosophila, Human) but cost can be prohibitive

Koren, Sergey; Schatz, Michael C; Walenz, Brian P; Martin, Jeffrey; Howard, Jason T et al. (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads Nature biotechnology vol. 30 (7) p. 693-700

Useful PacBio papers

• Resolving the complexity of the human genome using single-molecule sequencing
• Defining a personal, allele-specific, and single-molecule long-read transcriptome
Nanopore sequencing
What is a nanopore?

- Nanopore = ‘very small hole’
- Electrical current flows through the hole
- Introduce analyte of interest into the hole ➔ identify “analyte” by the disruption or block to the electrical current

https://nanoporetech.com/science-technology/introduction-to-nanopore-sensing/introduction-to-nanopore-sensing
Detection

Nanopore DNA sequencing

- Theory is quite simple
- Feed a 4nm wide DNA molecule through a 5nm wide hole
- As DNA passes through the hole, measure some property to determine which base is present
- Holds the promise of no library prep and enormously parallel sequencing
- In practice this is not easy to achieve

http://thenerdyvet.com/category/tech/
Types of pore

• Either biological or synthetic

• Biological
 – Lipid bilayers with biologically-derived pores
 – Best developed
 – Pores are stable but bilayers are difficult to maintain

• Synthetic
 – Graphene, or titanium nitride layer with solid-state pores
 – Less developed
 – Theoretically much more robust
Nanopore sequencing

- In practice, it is much harder
- Problems:
 - DNA moves through the pore quickly
 - Holes are difficult/impossible to design to be thin enough so that only one base is physically located within the hole
 - DNA bases are difficult to distinguish from each other without some form of labelling
 - Electrical noise and quantum effects make signal to noise ratios very low
 - Search space for DNA to find a pore is large

http://omicfrontiers.com/2014/04/10/nanopore
Nucleotide Recognition

Continuous base identification for single-molecule nanopore DNA sequencing

James Clarke¹, Hai-Chen Wu², Lakmal Jayasinghe¹2, Alpesh Patel¹, Stuart Reid¹ and Hagan Bayley¹2*

![Graph and image from the article]
Approaches to simplify nanopore sequencing

• Slow down movement of bases through nanopore
 – Use an enzyme to chop DNA up and sequence individual bases as they pass through a pore
 – And/or use an enzyme to slow the progress of DNA through a pore
 – Monitor capacitive changes in the bilayer

• Hybridize labels to single stranded DNA
 – Force the labels to disassociate as they pass through the pore
 – Detect the labels

Companies involved

• Oxford Nanopore is the only company with a commercialised product (MinION)
Oxford Nanopore platforms

MinION Mk 1
Up to 10Gbases/run

PromethION
Up to 4Tbases/run
Oxford Nanopore MinION programme

• Uses a different costing model

• Sequencer itself is provided free of charge

• $1000 buys a starter pack with 2 flowcells and basic library prep reagents and access to enhanced support for a few weeks

• Additional flowcells and library kits for $500-$900 each
DNA binding to membrane

Double stranded DNA fragment

Pore
Oxford Nanopore principle
DNA can be sequenced by threading it through a microscopic pore in a membrane. Bases are identified by the way they affect ions flowing through the pore from one side of the membrane to the other.

1. One protein unzips the DNA helix into two strands.
2. A second protein creates a pore in the membrane and holds an “adapter” molecule.
3. A flow of ions through the pore creates a current. Each base blocks the flow to a different degree, altering the current.
4. The adapter molecule keeps bases in place long enough for them to be identified electronically.

http://www2.technologyreview.com/article/427677/nanopore-sequencing/
MinIon features

• 2048 pores (512 addressable simultaneously)
• Library preparation is required
• Read lengths up to 400kb
 – Limited by input DNA
• Relatively high single pass non-random error rate (12%)
• Up to 10Gbase output
2D Library preparation

- **Input requirements**
 - Depends on fragment length required
 - Ideally upwards of 1ug of DNA
 - Low input option available – 20ng

- **Issues** – keeping long DNA fragments

- **New approaches** (e.g. Voltrax) attempting to create microfluidic
Basecalling 1D vs 2D reads

• Both the template and complementary strand can be sequenced
• This doesn’t always work
• If it does, the base-calling can be improved
• Different kmers at the same locus can improve basecalling
• The focus today is on 1D reads since library prep is easier
Challenge of basecalling

- Hidden Markov model
- Only four options per transition
- Pore type = distinct kmer length

- Form probabilistic path through measured states, currents, and transitions
 - e.g., Viterbi algorithm
Challenge of 5-mer basecalling

- $\text{TATTTTTTTT} \text{ vs } \text{TTTTTCTTTTT}$
Challenge of 5-mer basecalling

- CGTATTCGAA vs CGTATCTCGAA
Read lengths

- Highly dependent on input DNA length
- Difficult to preserve DNA lengths
Longest perfect stretches

Best Perfect kmer distribution

Frequency

0 100 200 300 400
0 10 20 30 40 50 60
best perfect kmer length
Hard to read motifs

Perfect kmers $K=5$

Hard Kmers
- AAAAA
- ACCTA
- ACCTC
- AGCGC
- AGCTA
- AGGTC

Easy Kmers
- AAGAA
- ACGAA
- CGTTC
- CTTTC
- GAACG
Examples and applications
Coverage of an E.coli genome
Human genome data

• Are the PacBio instruments already obsolete?
 – http://www.opiniomics.org/is-the-long-read-sequencing-war-already-over/

• Initial mapping of MinION data vs PacBio data to mitochondrial genome by David Eccles:
 MinION — 2,386 reads, 25.4% mismatch
 Sequel — 2,272 reads, 8.6% mismatch

• MinION accuracy is poor but pace of nanopore change is extremely fast

• You will be able to compare MinION, RSII and Sequel datasets during the Genomics workshop
MinIon Analysis Reference Consortium (MARC)

• Group of 20 labs evaluating MinIon performance using E.coli

• http://f1000research.com/articles/4-1075/v1
Yield of MinIon flowcells
Percentage of 2D pass reads produced over time.
Error rates of BWA-MEM EM-corrected alignments of target 2D base-calls.

Improvements

• FASTQ – per base quality values don’t make much sense
• Other types of model taking into account effects of bases sitting outside the pore
• Improvements to pore types
 – Utilise multiple pore types on a single flowcell
 – This would not make it a true single molecule sequencer since we would rely upon consensus (probably does not matter)
 – Enable sequencing of RNA and perhaps enable protein sensing
• Library preparation
Cost per megabase

http://wwwnc.cdc.gov/eid/article/22/2/15-1796_article
MinIon for de novo assembly and variant calling

- *De novo* sequencing and variant calling with nanopores using PoreSeq

- Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome
Novel applications

• Portable in-situ sequencing

• Nanopore sequencing as a rapidly deployable Ebola outbreak tool

• Nanopore sequencing in microgravity

Now available... minipcr

Small, simple, accessible PCR
Portable unit you can take anywhere
Fits in the palm of your hands
Easy to use
Control via PC, Laptop or any Android device

Only £499
Novel applications

- Direct RNA sequencing
Novel applications

• Rapid pathogen detection in clinical settings
 – Rapid identification of viral pathogens
 – Rapid draft sequencing of Salmonella during a hospital outbreak
Novel applications

• Teaching aids
 – Integration of mobile sequencers into a classroom

• Sequencing as a sensor

• Portable in-situ sequencing
 – Variety of examples, but still hampered by DNA extraction
Exeter Porecamp 2016
Comparison of ONT and PacBio

- E. coli sequenced to >100x coverage on MinION, RSII and Sequel with and w/o polishing

Genome statistics

<table>
<thead>
<tr>
<th>Genome fraction (%)</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>99 548</td>
<td>99 348</td>
<td>99 998</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duplicated reads</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.004</td>
<td>1.009</td>
<td>1.161</td>
<td>1.011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Largest alignment</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 348 966</td>
<td>2 392 583</td>
<td>2 300 968</td>
<td>2 375 054</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total aligned length</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 635 267</td>
<td>4 639 545</td>
<td>4 653 997</td>
<td>4 691 952</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NG50</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 639 545</td>
<td>4 598 803</td>
<td>4 653 997</td>
<td>4 691 952</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NA50</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 639 545</td>
<td>4 598 803</td>
<td>4 653 997</td>
<td>4 691 952</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NA75</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>809 610</td>
<td>3 932 583</td>
<td>787 005</td>
<td>442 121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NGA50</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 936 866</td>
<td>3 932 583</td>
<td>920 693</td>
<td>442 121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L050</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L075</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L075</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L075</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L075</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L075</th>
<th>MinION 2D contigs</th>
<th>RSII canu polished circ.</th>
<th>Sequel canu contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Mismatches

- # misassemblies: 5
- # relocations: 2
- # translocations: 0
- # inversions: 0
- # misassembled contigs: 1
- # misassembled contigs length: 4 635 362
- # local misassemblies: 6

Unaligned

- # fully unaligned contigs: 0
- # partially unaligned contigs: 1
- # with misassembly: 1
- # both parts are significant: 1
- Partially unaligned length: 47 385

Mismatches

- # mismatches: 193
- # indels: 588
- # indels length: 418
- # misassemblies per 100 kbp: 4.19
- # misassemblies per 100 kbp: 4 635 267
- # short indels: 12 94
- # long indels: 1 1
- # N's: 0
- # N's per 100 kbp: 0
Advantages of ONT vs PacBio

• Lower input amounts (ng possible)
• Less sensitivity to size distribution (although small DNA fragments will still sequence preferentially)
• Portable
• Zero capital costs
• Novel applications
• Longer read lengths (100s kb achieved)
• Higher yield (up to 10Gbases per flowcell)
Disadvantages of ONT vs PacBio

- Some material can be difficult to prepare, especially if bio-mass
- Difficult to QC libraries once made
- Higher cost per base (if capital costs are ignored)
- Non-random error profile
- Cannot read the same DNA molecule more than once
Opportunities

• Online ‘streaming’ bioinformatics
 – Analytics - one read at a time
• Developing complex sample -> sequencer ready protocols for use in the field
• Extracting/preserving long DNA fragments
• Identifying sources of bias
• Has the potential to replace established technologies and give us access to lots of long reads
Software packages

- Tracking and managing MinIon data
 - MinoTour - http://minotour.github.io/minoTour

- Processing ONT data
 - Poretools https://github.com/arq5x/poretools
 - poRe http://sourceforge.net/projects/rpore/
 - NanoCorr http://schatzlab.cshl.edu/data/nanocorr/
 - Nanopolish https://github.com/jts/nanopolish/
 - PoreSeq - http://www.nature.com/nbt/journal/v33/n10/full/nbt.3360.html
 - MarginAlign - https://github.com/benedictpaten/marginAlign
 - Lordec https://www.gatb.fr/software/lordec/

- Alignment
 Sensitive but slow aligners
 - BLAST
 - BLASR
 - LAST
 - BWA with the right parameters

- Assembly
 - Possible to obtain ONT-only assembly
 - Error correction with other data types is also possible
 - Offer an appealing and affordable alternative to PacBio or Illumina synthetic long reads
Beyond single nanopores?

• Single base-pair resolution is not available
 – Typically 4-5 nucleotides have to be measured simultaneously

• Only one detector per DNA strand

• Fast translocation of DNA through pore

• Small signal and high noise

• Bilayer stability
Nanowire alternatives

• QuantumDx QSEQ
Others in development

In conclusion

• We are mastering reading DNA (at least some of it)

• Now we are in a position to precisely edit and engineer biological systems
Thanks to:

Karen Moore
Jeremie Poschmann
Audrey Farbos
Paul O’Neill

Wellcome Trust

Contact me:
k.h.paszkwiecz@exeter.ac.uk
http://sequencing.exeter.ac.uk