Genome Structural Variation

Evan Eichler
Howard Hughes Medical Institute
University of Washington

January 11th, 2020, Genomics Workshop, Český Krumlov
Genetic Variation

Types

- Single base-pair changes – point mutations
- Small insertions/deletions – frameshift, microsatellite, minisatellite
- Mobile elements — retroelement insertions (300bp -10 kb in size)
- Large-scale genomic variation (>1 kb)
 - Large-scale Deletions, Inversion, translocations
 - Segmental Duplications
- Chromosomal variation — translocations, inversions, fusions.

Cytogenetics
Genome Structural Variation

Deletion

Duplication

Inversion
Introduction

• **Genome structural variation**: gains and losses of DNA (copy-number variation (CNV)) as well as balanced events such as inversions and translocations—operationally defined >50 bp

• **Objectives**
 1. Genomic architecture and disease impact.
 2. Detection and characterization methods
 3. Primate genome evolution
Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans

The Influence of CCL3L1 Gene-Containing Segmental Duplications on HIV-1/AIDS Susceptibility

Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome

Association between Microdeletion and Microduplication at 16p11.2 and Autism

Schizophrenia risk from complex variation of complement component 4

Strong Association of De Novo Copy Number Mutations with Autism

NCE

SCIENCE VOL 316 20 APRIL 2007

Nature, 2006

VOLUME 38 | NUMBER 9 | SEPTEMBER 2006 NATURE GENETICS

Enrique Gonzalez,1* Hemant Kulkarni,1* Hector Bolivar,1** Andrea Mangano,2* Raquel Sanchez,1‡ Gabriel Catano,1‡ Robert J. Nibbs,3‡ Barry I. Freedman,4‡ Marlon P. Quinones,1‡ Michael J. Bamshad,5 Krishna K. Murthy,6 Brad H. Rovin,7 William Bradley,8,9 Robert A. Clark,1 Stephanie A. Anderson,8,9 Robert J. O’Connell,9,10 Brian K. Agan,9,10 Seema S. Ahuja,1 Rosa Bologna,11 Luisa Sen,2 Matthew J. Dolan,9,10,12‡ Sunil K. Ahuja1‡

Nature 530, 177–183(2016) | Cite this article

Andrew J Sharp1, Sierra Hansen1, Rebecca R Selzer2, Ze Cheng1, Regina Regan3, Jane A Hurst4, Helen Stewart4, Sue M Price5, Edward Blair4, Raoul C Hennekam3,6, Carrie A Fitzpatrick5, Rick Segre5,6, Todd A Richmond2, Cheryl Guiver3, Donna G Albertson6,7, Daniel Pinkel5, Peever S Eis2, Stuart Schwartz7, Samantha J L Knight5 & Evan E Eichler1
Perspective: Segmental Duplications (SD)

Definition: Continuous portion of genomic sequence represented more than once in the genome (>90% and > 1kb in length)—historical copy number variation
Importance:
SDs promote Structural Variation

Non Allelic Homologous Recombination (NAHR)

Human Disease
Triplosensitive, Haploinsufficient and Imprinted Genes
Importance: Evolution of New Gene Function

GeneA → Duplication → GeneA' → Acquire New/Modified Function

Mutation → Maintain old Function

Mutation → Loss of Function
I. Human Genome Segmental Duplication Pattern

- ~4% duplication (125 Mb)
- >20 kb, >95%
- 59.5% interspersed
- gene/transcript rich
- Associated with Alu repeats

Mouse Segmental Duplication Pattern

• 118 Mb or ~4% dup
• >20 kb, >95%
• 89% are tandem
• Gene/transcript poor
• Associated with LINEs

She, X et al., (2008) Nature Genetics
Human Segmental Duplications Properties

• Large (>10 kb)
• Recent (>95% identity)
• Interspersed (60% are separated by more than 1 Mb)
• Modular in organization
• Difficult to resolve
Genomic Disorders: A group of diseases that results from genome rearrangement mediated mostly by non-allelic homologous recombination. (Inoue & Lupski, 2002).
DiGeorge/VCFS/22q11 Syndrome

1/2000 live births
180 phenotypes
75-80% are sporadic (not inherited)
• 130 candidate regions (298 Mb)
• 23 associated with genetic disease
• Target patients array CGH

Human Genome Segmental Duplication Map

Bailey et al. (2002), Science
Genome Wide CNV Burden
(15,767 cases of ID, DD, MCA vs. 8,328 controls)

~14.2% of genetic cause of developmental delay explained by large CNVs (>500 kbp)

Cooper et al., Nat. Genet, 2011
Common and Rare Structural Variation are Linked
17q21.31 Deletion Syndrome
17q21.31 Inversion

- Region of recurrent deletion is a site of common inversion polymorphism in the human population
- Inversion is largely restricted to Caucasian populations
 - 20% frequency in European and Mediterranean populations
- Inversion is associated with increase in global recombination and increased fecundity

Stefansson, K et al., (2005) Nature Genetics
Direct Orientation allele (H1)
Inverted orientation allele (H2)

- Tested 17 parents of children with microdeletion and found that every parent within whose germline the deletion occurred carried an inversion
- Inversion polymorphism is a risk factor for the microdeletion event
Duplication Architecture of 17q21.31 Inversion (H2) vs. Direct (H1) Haplotype

- Inversion occurred 2.3 million years ago and was mediated by the LRRC37A core duplicon
- H2 haplotype acquired human-specific duplications in direct orientation that mediate rearrangement and disrupts KANSL1 gene

Structural Variation Diversity

Eight Distinct Complex Haplotypes

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Diagram</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1.2</td>
<td></td>
<td>1.29Mb</td>
</tr>
<tr>
<td>H1.1</td>
<td></td>
<td>1.08Mb</td>
</tr>
<tr>
<td>H1.3</td>
<td></td>
<td>1.5Mb</td>
</tr>
<tr>
<td>H1D</td>
<td></td>
<td>1.29Mb</td>
</tr>
<tr>
<td>H1D.3</td>
<td></td>
<td>1.49Mb</td>
</tr>
<tr>
<td>H2.1</td>
<td></td>
<td>1.19Mb</td>
</tr>
<tr>
<td>H2.2</td>
<td></td>
<td>1.41Mb</td>
</tr>
<tr>
<td>H2D</td>
<td></td>
<td>1.8Mb</td>
</tr>
</tbody>
</table>
Summary

- Human genome is enriched for segmental duplications which predisposes to recurrent large CNVs during germ-cell production.
- 15% of neurocognitive disease in intellectual disabled children is “caused” by CNVs—8% of normals carry large events.
- Segmental Duplications enriched 10-25 fold for structural variation.
- Increased complexity is beneficial and deleterious: Ancestral duplication predisposes to inversion polymorphism, inversion polymorphisms acquires duplication, haplotype becomes positively selected and now predisposes to microdeletion.
II. Genome-wide SV Discovery Approaches

Hybridization-based
- Iafrate et al., 2004, Sebat et al., 2004
- SNP microarrays: McCarroll et al., 2008, Cooper et al., 2008, Itsara et al., 2009
- Array CGH: Redon et al. 2006, Conrad et al., 2010, Park et al., 2010, WTCCC, 2010

Single molecule mapping
- Optical mapping: Teague et al., 2010
- Bionano Genomics: Levy-Sakin et al, 2019

Sequencing-based
- Read-depth: Bailey et al, 2002
- Next-gen sequencing: Korbel et al. 2007, Yoon et al., 2009, Alkan et al., 2009, Chen et al. 2009; Mills 1000 Genomes Project, 2011, Sudmant et al. 2015a,
- 3rd generation –Long-read Sequencing: Chaisson et al., 2015, 2019, Pendleton et al., 2015, Sedlazeck et a., 2018 Audano et al, 2019
Array Comparative Genomic Hybridization

One copy gain = $\log_2(3/2) = 0.57$ (3 copies vs. 2 copies in reference)
One-copy loss = $\log_2(1/2) = -1$
SNP Microarray detection of Deletion (Illumina)

Human chromosome 3 position

LogR and B-Alele Frequency

A- or B-

46700000 46740000 46770000 46810000 46850000 46890000

~55 kbp
Using Read Pairs to Resolve Structural Variation

Dataset: 1,122,408 fosmid pairs preprocessed (15.5X genome coverage)
639,204 fosmid pairs BEST pairs (8.8X genome coverage)
Genome-wide Detection of Structural Variation (>8kb) by End-Sequence Pairs

a) Insertion
b) Deletion

Inversion

Inconsistent orientation

discordant by orientation (yellow/gold)
discordant size (red)
duplication track

Experimental Approaches Incomplete
(Examined 5 identical genomes > 5kbp)

Fosmid ESP Clone sequencing
Kidd et al. N=1,206

Array CGH
Conrad et al. N=1,128

McCarroll et al.
N=236
Affymetrix 6.0 SNP Microarray
Next-Generation Sequencing Methods

- **Read pair analysis**
 - Deletions, small novel insertions, inversions, transposons
 - Size and breakpoint resolution dependent to insert size

- **Read depth analysis**
 - Deletions and duplications only
 - Relatively poor breakpoint resolution

- **Split read analysis**
 - Small novel insertions/deletions, and mobile element insertions
 - 1bp breakpoint resolution

- **Local and de novo assembly**
 - SV in unique segments
 - 1bp breakpoint resolution

Alkan et al., Nat Rev Genet, 2011
Computational Approaches are Incomplete
159 genomes (2-4X) (deletions only)

Read-Pair

6855 (63%)

3250

1772 (33%)

Read-Depth

3223 (80%)

486

Split-read

Mills et al., Nature 2011
Challenges

• Size spectrum—\(>5 \) kbp discovery limit for most experimental platforms; NGS can detect much smaller but misses events mediated by repeats.
• Class bias: deletions\(>>> \)duplications\(>>>> \)balanced events (inversions)
• Multiallelic copy number states—incomplete references and the complexity of repetitive DNA
• False negatives.
Using Sequence Read Depth

- Map whole genome sequence to reference genome
 - Variation in copy number correlates linearly with read-depth
- Caveat: need to develop algorithms that can map reads to all possible locations given a preset divergence (eg. mrFAST, mrsFAST)

Illumina Sequence

Celera’s
27.3 million reads

Random Genome Sample

Bailey et al., Science, 2002
Personalized Duplication or Copy-Number Variation Maps

Venter (Sanger)

Watson (454)

NA12878 (Solexa)

NA12891 (Solexa)

NA12892 (Solexa)

• Two known ~70 kbp CNPs, CNP#1 duplication absent in Venter but predicted in Watson and NA12878, CNP#2 present mother but neither father or child

Alkan, Nat. Genet, 2009
Read-Depth CNV Heat Maps vs. FISH
71% of Europeans carry at least Partial duplication distal (17q21 associated)—all inversions carry the duplication

24% of Asians are hexaploid for NSF gene N-ETHYLMALEIMIDE-SENSITIVE FACTOR potentially important in synapse membrane fusion; NSF (decreased expression in schizophrenia brains (Mimics, 2000), Drosophila mutants results in aberrant synaptic transmission)

Sudmant et al., 2010, Science
Unique Sequence Identifiers Distinguish Copies

- Self-comparison identifies 3.9 million singly unique nucleotide (SUN) identifiers in duplicated sequences
- Select 3.4 million SUNs based on detection in 10/11 genomes=informative SUNs=paralogous sequence variants that are largely fixed
- Measure read-depth for specific SUNs--genotype copy-number status of specific paralogs
NBPF Gene Family Diversity

NBPF1

NBPF14

NBPF7

Copy Number

African
Asian
European
Future of SV Detection

1) **Focus on comprehensive assessment of genetic variation**—large portions of human genetic variation are still missed.

2) **Current NGS methods are indirect** and do not resolve structure but provide specificity and excellent dynamic range response.

3) **High quality sequence resolution of complex structural variation to establish alternate references/haplotypes**—often show extraordinary differences in genetic diversity.

4) **Technology advances in whole genome sequencing “Third Generation Sequencing”**: Long-read sequencing technologies with NGS throughput in order to sequence and assemble regions and genomes *de novo*.
Single-Molecule Real-Time Sequencing (SMRT) a.k.a. PacBio sequencing

CLR—Continuous Long Reads—no cloning, low throughput, 15% error rate
CCS—Circular Consensus Sequencing—no cloning, high throughput 0.1% error rate
PacBio sequence reads are long, uniformly distributed with near-random error

- P6C4 chemistry—30-40 kbp libraries
- Mean 15-25 kbp read (6 hr movies)
- Max 120-130 kbp
Structural variation detection using SMRT-SV on complete hydatidiform moles

BLASR alignment of reads

Signatures of structural variants
- contained deletion
- contained insertion
- single hard-stop
- double hard-stop
- inverted hard-stop

Celera assembly

Remap reads, generate Quiver consensus

Map consensus, structural variant resolution

Increased Resolution of Structural Variation

92% of insertions and 60% deletions (30-5,000 bp) are novel
22,112 novel genetic variants corresponding to 11 Mbp of sequence
6,796 of the events map within 3,418 genes
169 within coding sequence or UTRs of genes

In Silico Diploid Genome: CHM1+CHM13

- two haploid human genomes full phased = 29,992 distinct SV events
- 30% of it missed by a naïve SMRT-SV caller that did not phase
- 89% of variants missed by the 1000 Genomes Project even after adjusting for common variants (MAF>1%)

Huddleston et al, Genome Res, 2016
Human Genome Structural Variation Consortium (HGSVC)

- Establish gold standards for human genome SV
- Sequence three trios deeply with multiple platforms (Illumina, PacBio, 10X, Strand-seq, Bionano Genomics and one with ONT)
Phased-SV: Comprehensive SV Detection of a Diploid

- Strand-seq and 10-X linked read data are used to phase 70% of all PacBio Reads
- SVs are called using haplotype-type partitioned reads that are locally assembled
- 3-fold increase in sensitivity compared to 11-Illumina callers (30,000 vs. 11,000 events)

Chaisson et al, Biorxiv, 2017/Nat Comm, 2019
Sequencing Platform Comparison for SV Detection

- ~30,000 PB vs. 11,000 Illumina SVs
- Illumina WGS at 30-40 fold sequence coverage combining results from 11 different SV callers (including Lumpy, GenomeStrip, Manta, WhamG etc) detects a maximum of 49% of deletions and 11% of insertions in a human genome
- Large scale studies of WGS are identifying ~27% of SV variation events
- Most of missing variation between 50-500 bp

Chaisson et al, Biorxiv, 2017/Nat Comm, 2019
Advances in Long-Read Sequencing

HiFi Pac Bio Sequencing

- Double-stranded DNA
- Ligate Adapters
- Anneal Primer and Bind DNA Polymerase
- Sequence
- Generate Consensus Read
- CCS Read
- Reference

Ultra-long reads ONT

- Median=36.7
- Mean=67.3
- N50=139.9
- N1=631.9
- Max=1538.3

99.9% accurate 18 kbp reads
Telomere-to-telomere assembly of CHM13

N50 of 85.8 Mbp!
(compared to 56 Mbp GRCh38)

166 collapsed regions corresponding to ~18.2 Mb of non-overlapping sequence

Miga et al, biorxiv, 2019
Reference-free long-read phased diploid genomes (HiFi & Strandseq)

- 33.4-fold HiFi coverage from a 1000 Genomes Project Puerto Rican Genome HG00733 (sequence N50=13.4 kbp)
- Strand-seq: 2.87 X of linked reads (115 single-cell libraries) that allow chromosomal phasing
- 23 clusters where contigs are orientated without guidance from reference
- 95% of SNPs phased
- 81% of HiFi reads assigned to one of two haplotypes H1/H2
- ~5000 cpu-hours

Porubsky, Ebert, Marschall et al. Biorxiv, 2019
Phased Assembly Contiguity
(Contig N50 H1=28.0 Mbp & H2=29.2 Mbp)

Contig N50: the sequence length of the shortest contig at 50% of the total genome length.
A 6 Gbp Human Genome Assembly

Porubsky et al. Biorxiv, 2019
Goal: Telomere-to-telomere assembly of 350 human genomes over the next five years that represents the diversity of humanity
Sequence and assembly of chromosome 8 centromere

Chromosome 8

2.17 Mbp in 11 reads

SUNs and ONT Reads

Repeatmasker

LINEs & LTRs Two SINEs and inversion 1.51 Mbp of uninterrupted α-satellite LINEs, γ-satellite, & SINEs

Fold coverage of k-mer-mapped ultra-long ONT reads

methylated unmethylated

~75 kbp dip in methylation!

Logsdon and T2T, unpublished
Summary

• Short read NGS approaches
 – Multiple methods need to be employed with short reads—Readpair+Read-depth+SplitRead coupled to an orthogonal method such as SNP microarray for validation
 – Tradeoff between sensitivity and specificity
 – 25% of SVs can be reliably detected because SVs is non-randomly distributed to repetitive regions
 – Read-depth approaches allow prediction of copy number in more complex regions but do not provide structure

• Third generation sequencing methods provide comprehensive assessment but limited throughput
 – Initial methods based on detection of specific signatures and local assembly
 – Ultimate is haplotype-resolved assembled genomes
• Ohno—Duplication is the primary force by which new gene functions are created
• There are 990 annotated genes completely contained within segmental duplications
Dynamic Genetic Variation

- Genomic copy number changes contributes more genetic difference between apes and humans than SNVs
- 468 Mbp CNV vs. 167 Mbp SNVs (ration: 2.8)

A mosaic of recently transposed duplications

- Duplications within duplications.
- Potentiates “exon shuffling”, regulatory innovation
The burst of segmental duplications 8-12 mya corresponds to core-associated duplications which have occurred on six human chromosomes (chromosomes 1, 2, 7, 15, 16, 17).

Most of the recurrent genomic disorders associated with developmental delay, epilepsy, intellectual disability, etc. are mediated by duplication blocks centered on a core.

Jiang et al, Nat. Genet., 2007
Human Great-ape “Core Duplicons” have led to the Emergence of New Genes

TRE2

NPIP

NBPF

LRRC37A

RGPD

Features: No orthologs in mouse; multiple copies in chimp & human; dramatic changes in expression profile; signatures of positive selection
Core Duplicon Hypothesis

The selective disadvantage of interspersed duplications is offset by the benefit of evolutionary plasticity and the emergence of new genes with new functions associated with core duplicons.

Marques-Bonet and Eichler, CSHL Quant Biol, 2008
Notable human-specific expansion of brain development genes.

Neuronal cell death: $p=5.7e^{-4}$; Neurological disease: $p=4.6e^{-2}$

Sudmant et al., *Science,* 2010
SRGAP2 function

- **SRGAP2** (*SLIT-ROBO Rho GTPase activating protein 2*) functions to control migration of neurons and dendritic formation in the cortex.
- Gene has been duplicated three times in human and no other mammalian lineage.
- Duplicated loci not in human genome.

Guerrier et al., *Cell*, 2009
SRGAP2 Human Specific Duplication

Dennis, Nuttle et al., Cell, 2012
SRGAP2C is fixed in humans
(n=661 individual genomes)
SRGAP2 duplicates are expressed

RNAseq

In situ

Human embryos *Gestational Week 12*
SRGAP2C duplicate antagonizes function

Charrier et al., *Cell*, 2012
Example 2: Human-specific Duplication of ARHGAP11B

- A human-specific duplicated Rho GTPase activating protein that is truncated (5.3 mya)
- Predisposes to the most common cause of epilepsy
- Increase in number of basal radial glial hypothesized to lead to enlargement of the subventricular zone in humans.
- \textit{ARHGAP11B} is expressed specifically in basal radial glial cells

ARHGAP11B induced gyrification of mouse brain

- E13.5 microinjection of **ARHGAP11B** induced folding in the neocortex by E18.5 in ½ of the cases—a significant increase in cortical area.

Florea et al., Science 2015
Duplication of \(\text{ARHGAP11B} \) and \(15q13.3 \) Syndrome

Duplication from \(\text{ARHGAP11A} \) to \(\text{ARHGAP11B} \) estimated to have occurred 5.3 +/- 0.5 million years ago.

\[\text{Antonacci et al., Nat Genet, 2014,} \]
Human-Specific Gene Innovations and Duplications

- **SRGAP2C**— 3.2 mya—produces a truncated protein that heterodimerizes with the parental product and alters neuronal migration, dendritic morphology and density of synapses (Dennis et al., Cell, 2012; Charrier et al., Cell, 2012).

- **ARHGAP11B**— truncated duplicate is expressed in basal radial glial cells appears to expand neuronal count and expand subventricular zone (Antonacci et al., Nat Genet, 2014; Florio et al., Science, 2015).

- **BOLA2B**--- (256 kya) duplication of gene family specifically at root of Homo sapiens, rapid fixation and largest difference between Neandertals and human genomes and is important in iron homeostasis (Nuttle et al., Nature, 2016, Gianuzzi et al., Am J Hum Genet 2019).

- **NOTCH2NL**--- (<3 mya) partial duplication expressed in radial glial where interacts with NOTCH2 receptors and delays neuronal progenitor differentiation(Fiddes et al., Cell, 2018)

- Properties: Nearly fixed for copy number in the human population, predispose to disease instability and the duplications are incomplete with respect to gene structure. **NONE present in original human genome.**
Summary

• Interspersed duplication architecture sensitized our genome to copy-number variation increasing our species predisposition to disease—children with autism and intellectual disability

• Duplication architecture has evolved recently in a punctuated fashion around core duplicons which encode human great-ape specific gene innovations (eg. \textit{NPIP, NBPF, LRRC37}, etc.).

• Cores have propagated in a stepwise fashion “transducing” flanking sequences---human-specific acquisitions flanks are associated with brain developmental genes.

• \textbf{Core Duplicon Hypothesis}: Selective disadvantage of these interspersed duplications offset by newly minted genes and new locations within our species. Eg. \textit{SRGAP2C}
Overall Summary

• **I. Disease:** Role of CNVs in human disease—relationship of common and rare variants—a genomic bias in location and gene type

• **II. Methods:** NGS Read-pair and read-depth methods to characterize SVs within genomes—long-read genomes that fully phase and assemble promise comprehensive characterization

• **III: Evolution:** Rapid evolution of complex human architecture that predisposes to disease coupled to gene innovation
Disease

Evolution
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV</td>
<td>Structural variation</td>
</tr>
<tr>
<td>CNV</td>
<td>Copy number variation</td>
</tr>
<tr>
<td>CNP</td>
<td>Copy number polymorphism</td>
</tr>
<tr>
<td>NGS</td>
<td>Next generation sequencing</td>
</tr>
<tr>
<td>(eg. Illumina short read)</td>
<td></td>
</tr>
<tr>
<td>Indel</td>
<td>Insertion/deletion event</td>
</tr>
<tr>
<td>SD</td>
<td>Segmental duplication</td>
</tr>
<tr>
<td>SUN</td>
<td>Singly-unique nucleotide identifier</td>
</tr>
<tr>
<td>SMRT</td>
<td>Single-molecule real-time sequencing</td>
</tr>
<tr>
<td>CCS</td>
<td>Circular consensus sequencing</td>
</tr>
<tr>
<td>HiFi</td>
<td>High fidelity long-read</td>
</tr>
<tr>
<td>CLR</td>
<td>Continuous long-read sequencing</td>
</tr>
<tr>
<td>WGS</td>
<td>Whole genome shotgun sequencing</td>
</tr>
<tr>
<td>ONT</td>
<td>Oxford Nanopore Technology</td>
</tr>
<tr>
<td>PacBio</td>
<td>Pacific Biosciences</td>
</tr>
<tr>
<td>ZMW</td>
<td>Zero-mode wave guide</td>
</tr>
</tbody>
</table>
SV Software

- **PennCNV** (Kai Wang) and **CNVPartition**—calling CNVs from SNP microarray
- **Genomestrip**—Handsaker/McCarroll—combines read-depth and readpair data to identify potential sites of SV data from population genomic data
- **dCGH**—Sudmant/Eichler—measure Illumina read-depth using multi-read sequence mapper (mrsFAST/mrFAST)
- **Delly**—EMBL Rausch/Korbel—uses split-read and readpair signatures to increase sensitivity and specificity
- **Lumpy** --Quinlan/Hall—uses probabilistic framework to integrate multiple structural variation signals such as discordant paired-end alignments and split-read alignments
- Conifer and XHMM— Krumm/Eichler & Frommer/Purcell calling CNVs from exomes
- **SMRT-SV2 & Phased-SV**—Chaisson/Eichler—maps SMRT long reads (BLASR/minimap) to reference, detects signatures of SV and generates local assembly
- **PBSV**—Aaron Wenger (PacificBiosciences software) signatures from pbmm2 alignments
- **SNIFFLES**—Sedlacek/Schatz— NGLMR mapping of PacBio or ONT data using split-read alignments, high-mismatch regions, and coverage analysis
SD-Mediated Rearrangements

(a) Interchromosomal Direct
(b) Inverted Direct
(c) Complex Direct
(d) Intrachromosomal Direct
(e) Intrachromosomal Inverted
(f) Intrachromosomal Complex

(g) Intrachromatid Direct
(h) Intrachromatid Inverted
(i) Intrachromatid Complex