Population Genomics

Stories of bears, penguins and maybe beans

Emiliano Trucchi

Workshop on Genomics 2020

Cesky Krumlov
Emiliano Trucchi

Research on: Inferences of demographic and adaptive processes in natural populations of (mostly) non-model species.

Keywords: population genetics, genomics, molecular ecology, conservation genetics, phylogeography, phylogenetics, bioinformatics.

My academic record: University of Roma3 (Master), Tor Vergata (PhD), Oslo (postdoc 1 - Marie Curie), Vienna (postdoc 2), Ferrara (researcher), Marche Polytechnic (assistant professor).

emiliano.trucchi@univpm.it
What is population genetics? (back to basics)

“The study of the **genetic composition** of natural populations and its evolutionary causes and consequences” (Coop 2019)

Genetic drift
Migration
Recombination
Mutation
Selection
What is population genetics? (back to basics)

A set of theoretical models to understand how these forces interact

Simple as any model simplifying reality
(... all models are wrong but some are useful, Box 1979)

Useful for understanding real patterns - give accurate predictions
(e.g., medical genetics, crop improvements, species conservation)

Powerful as the basic rules of genetic transmissions are simple and universal
Population genomics as a tool in conservation biology

SIDE A: The extraordinary genomic history of the endangered Apennine Brown Bear

SIDE B: Climate-driven range shifts in fragmented ecosystems

Bonus track: Ancient genomes reveal early farmers selected common bean while preserving diversity
The extraordinary genomic history of the endangered Apennine Brown Bear
Brown bear distribution
Generally holarctic with a more southern range in Asia

No global conservation issue
Brown bear distribution
Fragmented in South-Eastern Europe

More or less stable population, ca. 17,000 individuals

(Status of Large Carnivore Populations in Europe 2012-2016)
Brown bear distribution
A small and isolated population in Central Italy

Less than 100 individuals since it the population has been checked (last century). Now ca. 50 individuals.
Brown bear distribution
A small and isolated population in Central Italy

Less than 100 individuals since it the population has been checked (last century). Now ca. **50** individuals

How long has this population been so small and isolated?
Brown bear distribution
A small and isolated population in Central Italy

Less than 100 individuals since it the population has been checked (last century). Now ca. 50 individuals

How long has this population been so small and isolated?

6 WGS (●), 12 whole mt genome sequenced (○)
Whole-genome data
A few other samples from other European populations ...

Genome sequences from previously published studies

- **POL1**: Liu et al 2014
- **POL2**: Miller et al 2012
- **POL3**: SLK1
- **POL4**: SLK2
- **POL5**: GRE1
- **POL6**: GRE2
- **SWE1**: Liu et al 2014
- **SWE2**: Miller et al 2012
- **BLK1**: Miller et al 2012

Structure of genomic diversity
Whole-genome and mitochondrion contrasting histories

1,842,042,551 nuclear bp

16,485 mitochondrial bp

ANGSD, ngsDist, nj from ape R package

Geneious, MAFFT, genetic distance (HKY), NJ
Structure of genomic diversity
Whole-genome and mitochondrion contrasting histories

Liu et al 2014
Structure of genomic diversity
Y-chr agrees with whole-genome: sex-biased dispersal?

1,842,042,551 nuclear bp

5.3 Kb Y-chromosome

ANGSD, ngsDist, nj from ape R package

MAFFT, TCS
Structure of genomic diversity
Robust to decay of linkage disequilibrium

7,971 SNPs, 150bp thinning

100 SNPs, 10Mb thinning

STRUCTURE, non-cds, non-rep

ANGSD, ngsLD
Genomic diversity - average
Low but the polar bear is worse

High coverage:
vcftools, SNP density, 50kb windows
(then downsampled and analyzed as low coverage)

Low coverage:
ANGSD, realSFS, do_theta,
50kb windows
Genomic diversity - distribution
Low but the polar bear is worse...maybe not!
Genomic diversity - distribution
Long stretches with no diversity in the Apennine bear

vcftools, SNP density in 50kb windows
Inbreeding estimates
Much higher than any other European bear

Regions longer than 1Mb with less than 25 segregating sites in the 13 longest scaffolds, ca. 0.5 Gb - sorted (percent of the analyzed scaffolds)
Inbreeding estimates
Much higher than any other European bear

Based on the proportion of the genome segments that are mostly homozygous (Prüfer et al 2014)
Past demography
Apennine population declined more than other Eu pops

The graph shows the effective population size over time for various populations. The x-axis represents time in the past (years), and the y-axis represents effective population size. The data is analyzed using PSMC.
Effective population size (individuals)

Past demography
...and to very low Ne

ABC-skyline (Boitard et al 2016), fastsimcoal2, abc R package
Past demography
Decline 3,000 years ago to about 100 individuals

Simulation of expected pattern of homozygosity regions using ms
Past demography
Fragmentation of a large European population

ABC metapopulation model
Past demography
Fragmentation of a large European population

ABC metapopulation model

High connectivity among ancient populations

Recent fragmentation

Low connectivity among modern populations
Past demography
Apennine bears have been isolated since then

F statistic (Green et al 2010), simulation with ms
Past demography
Expansion of Neolithic farming in Europe burned forests
Why is this population still there?
Given such high extinction probability
Selective processes
Retention of non-synonymous polymorphisms

<table>
<thead>
<tr>
<th>Reference genome</th>
<th>Two APN</th>
<th>SLK1+SLK2</th>
<th>GRE1+GRE2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P_{n-syn}</td>
<td>P_{syn}</td>
<td>P_{n-syn}</td>
</tr>
<tr>
<td>ALP1</td>
<td>0.34</td>
<td>0.25</td>
<td>0.55</td>
</tr>
<tr>
<td>SLK1</td>
<td>0.36</td>
<td>0.26</td>
<td>-</td>
</tr>
</tbody>
</table>

McDonald-Kreitman like test
Fraction of heterozygous sites in a European bear that are still heterozygote in the Apennine bear, for synonymous and nonsynonymous sites

- $P_{n-syn} = P_{syn}$: drift
- $P_{n-syn} > P_{syn}$: **balancing selection**
- $P_{n-syn} < P_{syn}$: directional selection
Selective processes: balancing
Retention of high diversity regions (HDR)
Selective processes: balancing
HDR are enriched in immune and olfactory genes

Θ_w (bp$^{-1}$)

Five MHC genes

Six olfactory receptors genes

Scaffold118

Scaffold80
Selective processes: balancing
MHC genes are as diverse as in the rest of Europe

Sanger-sequencing of two *MHC* class II loci in additional individuals from Apennine and the rest of Europe
Genetic load
Accumulation of deleterious effects

Predicted deleterious substitution fixed
in the Apennine bears (by Panther + Polyphen): 40 + 4 stop codon

None in the other European bears!

5 in the **mt ND5** of which the most deleterious is not found elsewhere

<table>
<thead>
<tr>
<th>Gene</th>
<th>Position</th>
<th>#APNs (out of 6)</th>
<th>#NonAPNs (out of 45)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND5</td>
<td>G526E</td>
<td>6</td>
<td>0</td>
<td>-4.28</td>
</tr>
<tr>
<td>ND5</td>
<td>P447S</td>
<td>6</td>
<td>5</td>
<td>-3.59</td>
</tr>
<tr>
<td>ND5</td>
<td>T555A</td>
<td>6</td>
<td>3</td>
<td>-2.52</td>
</tr>
</tbody>
</table>
Genetic load in a specific group of genes
Are Apennine bears less aggressive?
Fixed differences in 22 “tameness” genes
Not all deleterious fixations come to harm

p = 0.037

Pattern confirmed with additional individuals in three of these genes: PLAXNB1, DCC, DLL3 (not yet checked in the others)
Maintaining and losing diversity in genes
Balancing selection and deleterious alleles fixation by drift
Concluding
Surviving and diverging at very small population size

The Apennine brown bear population is isolated since 300 generations (3,000 years) likely due to slash-and-burn agriculture during Neolithic expansion in Europe.

Population size has been rather small (less than 100-300) since then causing high inbreeding and massive loss of diversity genome-wide.

Genetic load of this population is high due to fixation of deleterious substitutions by genetic drift.

Some regions retaining high genetic diversity due to functional or structural reasons (duplicated loci, ectopic recombination) could have favoured survival.

Some alleles fixed by drift (or selected by hunting?) could have changed behavior-related traits decreasing human persecution of this population and, again, favouring survival.

(This work was done with just a handful of whole-genomes but about three years of work of quite some people!!)
Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers

Climate-driven range shifts in fragmented ecosystems

Understanding the impact of climate change on (sub-)Antarctic upper-level predators
The Southern Ocean: The Antarctic Polar Front
The Southern Ocean:
Chlorophyll and marine productivity
The Southern Ocean: Food web

- Killer whale
- Leopard seal
- Penguin
- Elephant seal
- Squid
- Fish
- Krill
- Phytoplankton
- Zooplankton
- Baleen whale
- Seabird
- Human
- Fur seal etc.
Global warming: A fact
Global warming: Which is the effect in Antarctic ecosystems?
The Southern Ocean: Penguins’ cradle

King penguin

Emperor penguin
The King penguin’s foraging strategy: The polar front area
The Emperor penguin’s foraging strategy: The coastal polynyas
Which will be the effects of climate change on demography and distribution of the two species?
Species distribution modeling…

coupled with genomics (RADseq + WGS) to validate model assumptions and hindcasting results
Our model of habitat suitability
Increasing temperature and shifting Polar Front
Our model of habitat suitability
Increasing temperature and shifting Polar Front
Bio-physical ecological niche model

Major constraints

Sea Surface Temperature (SST) and efficient foraging

Scheffer et al. 2010
Bio-physical ecological niche model
Major constraints

Sea Surface Temperature (SST) and efficient foraging

Bost et al. 2015
Bio-physical ecological niche model

Major constraints

Foraging distance \rightarrow 700 \text{ km limit}

Le Bohec et al. 2008
Bio-physical ecological niche model
Major constraints

Temperature -> year-round ice-free breeding grounds
Our model finds all suitable islands
Accurate description of current distribution
Our model suggests cold ice age refugia
Hindcasting very few suitable islands at the LGM
Genomic inference of past demography
In agreement with the species distribution model

Stairway plot using unfolded site frequency spectrum estimated by ANGSD
What is our prediction for the future?
Under ongoing climate change scenario (up to 2100)
Our model predicts largest colonies will be lost
Few islands will become suitable
Our model predicts largest colonies will be lost
Few islands will become suitable
Genomic inference of high gene flow
World-wide connectivity in the King penguin

About **50,000 loci** genotyped in ca. **160 individuals** from **13 colonies** in **6 archipelagos**.

One single **highly connected** metapopulation

Long-range dispersal is **not an issue**.
Genomic inference of high gene flow
World-wide connectivity in the King penguin

About 50,000 loci genotyped in ca. 160 individuals from 13 colonies in 6 archipelagos.

One single highly connected metapopulation

Long-range dispersal is not an issue
The Emperor penguin’s foraging strategy:
Coastal polynyas are maintained by wind stress

Modelling wind stress on coastal ice area
The Emperor penguin’s foraging strategy:
Coastal polynyas are maintained by wind stress

6 models assessed for 4 variables, under 6 « forcing periods »

Modelling wind stress on coastal ice area
Genomic inference shows a constant population
No detectable effect of past climatic shifts

Stairway plot using unfolded site frequency spectrum estimated by ANGSD

Polynyas move along the coast but were (and likely will be) always present
« Catastrophic pulse dispersal »?

Mertz glacier, Adélie Land, before & after 2010

« Mass dispersal » events: Emperors need to stay flexible
Genomic-based inference of high gene flow
Full circumpolar migration in the Emperor penguin

Very weak signal of genetic differentiation between colonies from the opposite site of Antarctica.

About 35,000 loci genotyped in ca. 110 individuals from 6 colonies.
Genomic-based inference of high gene flow
Full circumpolar migration in the Emperor penguin

One single highly connected metapopulation
Long-range dispersal is not an issue

About 35,000 loci genotyped in ca. 110 individuals from 6 colonies.
Migration rate (around) and Fst (inside) estimates
Conclusions

Habitat fragmentation more than extreme-cold adaptation drives response to global warming
Research in progress
Understanding the genetic basis of the adaptations to the coldest environment on Earth
Research in progress
Understanding the genetic basis of the adaptations to the coldest environment on Earth

Using published reference genome CDS data within a custom pipeline to find orthologs and run PAML
Research in progress
Understanding the genetic basis of the adaptations to the coldest environment on Earth

Long term selection
Testing ca. 7,500 orthologs, 3.5X more genes show a signal in the Emperor branch
Research in progress
Understanding the genetic basis of the adaptations to the coldest environment on Earth

Clear differential selection signature in the Emperor (blue) vs the King (green) penguin

Whole-genome sequencing of 24 Emperor, 24 King, 3 Adelie and 3 Gentoo for selection scan with different approaches
Research in progress
Understanding the genetic basis of the adaptations to the coldest environment on Earth

Overlapping selection signature in the Emperor (blue) vs the King (green) penguin

How recombination rate landscape constraints adaptation?
Acknowledgements

Robin Cristofari

Céline Le Bohec

Andrea Benazzo, Giorgio Bertorelle, Francesco Bonadonna, Yves Cherel, Yvon Le Maho, Xiaoming Liu, Virginie Raybaud, Pierre Pistorius, Paul J. Ponganis, Nils Chr. Stenseth, Phil N. Trathan, Jason D. Whittington, Enrico Zanetti, Daniel P. Zitterbart

Cristofari et al 2018 Climate-driven range shifts of the king penguin in fragmented ecosystems. *Nature Climate Change* 8, 245-251

Trucchi et al 2019 Reply to: ‘The role of ocean dynamics in king penguin range estimation’. *Nature Climate Change* 9, 122
Ancient genomes reveal early farmers selected common beans while preserving diversity
Understanding tempo and mode of domestication

Selection on traits of interests

Genetic drift due to the domestication bottleneck
Selection on traits of interests

Genetic drift due to the domestication bottleneck

Which is the underlying genetics of selected phenotypic traits?

What is the temporal dynamics of both selection and loss of genetic diversity (genomic erosion)?
Common bean double independent domestication in meso and south America

165K years ago

75K years ago

Schmutz et al. 2014
Common bean double independent domestication in meso and south America

165K years ago

75K years ago

Schmutz et al 2014

Bitocchi et al 2012; Gaut 2014
Ancient genomics focus on south America domestication

5 museum collections

7 geographic area

9 archaeological sites in **North-West Argentina**

150 bean seeds collected **(and 16 pod fragments)**
Ancient genomics focus on south America domestication

Preliminary low coverage sequencing of 30 ancient seeds

15 ancient seeds whole-genome sequenced at 4-18X coverage

14 modern seeds, wild and domesticated
High quantity and quality of endogenous DNA in ancient common bean seeds.
Better preservation of ancient DNA at high altitude sites
Loss of genetic diversity is recent in common bean domestication
Loss of genetic diversity is recent in common bean domestication
All ancient seeds belong to the same genomic clade
Gene-by-gene scan of enrichment in fixed alternative alleles
Selection affected 4.5X more genes in ancient than in recent times
Ancient selection targets: glycerol metabolism, carbohydrate and sugar transport and metabolism, intracellular transport, regulatory elements, modification of proteins, glycosylation

Recent selection targets: immunity and defense, regulatory elements and transmembrane transport

A few immune genes show signature of both ancient and recent selection
Concluding, ancient selection but recent genetic erosion characterize bean domestication.

Early selection was probably based on larger number of seeds.

Seeds or cultivars exchange was common.

More sustainable than modern breeding programs (since Green revolution).
Concluding, ancient selection but recent genetic erosion characterize bean domestication.

Early selection was probably based on larger number of seeds.

Seeds or cultivars exchange was common.

More sustainable than modern breeding programs (since Green revolution).

Modern landraces from Chile are the most similar to the ancient Andean cultivars.
Take home message?

Any species can be a *model species*

Analyses are more important than data

Get many *collaborators*
Enjoy Genomics!

Emiliano Trucchi

Workshop on Genomics 2020
Cesky Krumlov